【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
题面
题解
这不是送分题吗。。。
转异或前缀和,构建可持久化\(Trie\)。
然后拿一个堆维护每次的最大值,每次如果取了一个数,就把它再在\(Trie\)树上查一次新建一个元素丢回堆里就行了。
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
#define ll long long
#define MAX 500500
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Node{int ch[2],v;}t[MAX*80];
int tot,rt[MAX];
void Modify(int &x,int d,ll val,int w)
{
++tot;t[tot]=t[x];x=tot;t[x].v+=w;if(d==-1)return;
if((val>>d)&1)Modify(t[x].ch[1],d-1,val,w);
else Modify(t[x].ch[0],d-1,val,w);
}
ll Query(int x,int d,ll val)
{
if(d==-1)return 0;int c=(val>>d)&1;
if(t[t[x].ch[c^1]].v)return (1ll<<d)+Query(t[x].ch[c^1],d-1,val);
else return Query(t[x].ch[c],d-1,val);
}
struct Data{ll w;int x;};
bool operator<(Data a,Data b){return a.w<b.w;}
priority_queue<Data> Q;
ll a[MAX],ans;int n,K;
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=a[i-1]^read();
for(int i=1;i<=n;++i)rt[i]=rt[i-1],Modify(rt[i],32,a[i-1],1);
for(int i=1;i<=n;++i)Q.push((Data){Query(rt[i],32,a[i]),i});
while(K--)
{
Data u=Q.top();Q.pop();
ans+=u.w;Modify(rt[u.x],32,u.w^a[u.x],-1);
Q.push((Data){Query(rt[u.x],32,a[u.x]),u.x});
}
printf("%lld\n",ans);
return 0;
}
【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)的更多相关文章
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
- 【简】题解 P5283 [十二省联考2019]异或粽子
传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...
- Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】
联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...
- 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)
点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...
- Luogu P5283 [十二省联考2019]异或粽子
感觉不是很难的一题,想了0.5h左右(思路歪了,不过想了一个大常数的两只\(\log\)做法233) 然后码+调了1h,除了一个SB的数组开小外基本上也没什么坑点 先讲一个先想到的方法,我们对于这种问 ...
- [十二省联考2019]异或粽子(堆+可持久化Trie)
前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...
- Luogu5283 十二省联考2019异或粽子(trie/可持久化trie+堆)
做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两 ...
- 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)
LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...
随机推荐
- 利用efi功能更改bios主板被隐藏的设置(如超频)
整理自(来源): http://tieba.baidu.com/p/4934345324 ([新手教程]利用EFI启动盘修改 隐藏bios设置) http://tieba.baidu.com/p/49 ...
- asp.net core webapi/website+Azure DevOps+GitHub+Docker
asp.net core webapi/website+Azure DevOps+GitHub+Docker 新春开篇作,主要写一下关于asp.net core web/api 2.2 项目借助dev ...
- 导致spring事务配置不起作用的一种原因
@Component public class AnalyticsApplication { @Autowired private InitializationActionService initia ...
- oracle nvl2函数
nvl2(v1, v2, v3) 定义:如果v1为空,返回v3: 不为空,返回v2 nvl2要求v2,v3的类型一致,不一致会发生类型转换.问题:最终返回值类型是v2的类型还是v3的类型? 看题目:n ...
- 【任务】信息检索.MOOC学习
[博客导航] [信息检索导航] 任务 18年12月4日开始,快速浏览,学习中国大学MOOC平台上黄如花老师的<信息检索>课程. 关键动力 0.搜索是最基础的能力,需要系统学习并应用. 1. ...
- org.apache.ibatis.builder.IncompleteElementException: Could not find result map com.hp.entity.Emp
错误提示代码: org.apache.ibatis.builder.IncompleteElementException: Could not find result map com.hp.entit ...
- centos7下kubernetes(14。kubernetes-DNS访问service)
我们在部署kubernetes时,会自动部署dns组件,其作用是通过dns解析的方法访问service coredns是一个DNS服务器,每当有新的service被创建,kube-dns会添加该ser ...
- shell中的EOF用法
重定位运算符 >> 是追加内容> 是覆盖原有内容 1.EOF Shell中通常将EOF与 << 结合使用,表示后续的输入作为子命令或子Shell的输入,直到遇到EOF为止 ...
- Linux内核入门到放弃-设备驱动程序-《深入Linux内核架构》笔记
I/O体系结构 总线系统 PCI(Peripheral Component Interconnect) ISA(Industrial Standard Architecture) SBus IEEE1 ...
- AI pytorch
pytorch 参考链接: https://pytorch.org