//Accepted    300 KB    0 ms
 //区间dp
 //dp[i][j] 表示i到j第一个出场的最小diaosizhi
 //对于i到j考虑元素i
 //(1)i第一个出场,diaosizhi为 dp[i+1][j]+sum(i+1--j)
 //(2)i不是第一个出场,而是第k个出场,则i+1到k+i-1这段区间第一个出场,k+i到j第k+1个出场
 //diaoshizhi为dp[i+1][i+k-1] + a[i]*(k-1) + (dp[i+k][j]+k*sum(i+k--j))
 //sum为一段区间的diaosizhi的和,考虑k+i到j第k+1个出场相当于k+i到j第一个出场再加上k*(sum(i+k--j))
 #include <cstdio>
 #include <cstring>
 #include <iostream>
 using namespace std;
 ;
 int dp[imax_n][imax_n];
 int a[imax_n],sum[imax_n];
 int n;
 int min(int a,int b)
 {
     return a<b?a:b;
 }
 void Dp()
 {
     memset(dp,,sizeof(dp));
     ;l<=n;l++)
     {
         ;i<=n;i++)
         {
             ;
             if (j>n) break;
             dp[i][j]=dp[i+][j]+sum[j]-sum[i];
             ;k<=l;k++)
             {
                 dp[i][j]=min(dp[i][j],dp[i+][i+k-]+a[i]*(k-)+dp[i+k][j]+k*(sum[j]-sum[i+k-]));
             }
         }
     }
 }
 int main()
 {
     int T;
     scanf("%d",&T);
     ;t<=T;t++)
     {
         scanf("%d",&n);
         sum[]=;
         ;i<=n;i++)
         {
             scanf("%d",&a[i]);
             sum[i]=sum[i-]+a[i];
         }
         Dp();
         printf(][n]);
     }
     ;
 }
 //Accepted    4792 KB    281 ms
 //区间dp
 //dp[i][j][k] i到j整段区间在第k个出去时的最小花费
 //考虑区间中的第一个元素i,有一下两种情况:
 //(1)i在第k个出去,则i+1到j在第k+1个出去即dp[i+1][j][k+1]
 //(2)i不在第k个出去,则i后必有一段在第k个出去,假设这段为i+1到m
 //则有dp[i+1][m][k]+a[i]*(k+m-i)+dp[m+1][j][k+m-i+1]
 #include <cstdio>
 #include <cstring>
 #include <iostream>
 using namespace std;
 ;
 ;
 int dp[imax_n][imax_n][imax_n];
 int a[imax_n];
 int n;
 int min(int a,int b)
 {
     return a<b?a:b;
 }
 void Dp()
 {
     memset(dp,,sizeof(dp));
     ;i<=n;i++)
     {
         ;k<=n;k++)
         {
             dp[i][i][k]=(k-)*a[i];
         }
     }
     ;i<n;i++)
     {
         ;k<=n;k++)
         {
             dp[i][i+][k]=min((k-)*a[i]+k*a[i+],k*a[i]+(k-)*a[i+]);
         }
     }
     ;l<=n;l++)
     {
         ;i<=n;i++)
         {
             ;
             if (j>n) break;
             ;k<=n;k++)
             {
                 dp[i][j][k]=inf;
                 dp[i][j][k]=min(dp[i][j][k],dp[i+][j][k+]+(k-)*a[i]);
                 ;m<=j;m++)
                 {
                     dp[i][j][k]=min(dp[i][j][k],dp[i+][m][k]+a[i]*(k+m-i-)+dp[m+][j][k++m-i]);
                 }
             }
         }
     }
 }
 int main()
 {
     int T;
     scanf("%d",&T);
     ;t<=T;t++)
     {
         scanf("%d",&n);
         ;i<=n;i++)
         scanf("%d",&a[i]);
         Dp();
         printf(][n][]);
     }
     ;
 }

hdu4283 区间dp的更多相关文章

  1. HDU4283:You Are the One(区间DP)

    Problem Description The TV shows such as You Are the One has been very popular. In order to meet the ...

  2. hdu4283 You Are the One 区间DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4283 自己想了很久还是不会,参考了别人的思路才写的,区间DP还是很弱,继续努力!! 思路: 转载: 题 ...

  3. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  4. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  5. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  6. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  7. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  8. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  9. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

随机推荐

  1. Unity3D研究院编辑器之不实例化Prefab获取删除更新组件(十五)

    http://www.xuanyusong.com/archives/3727 感谢楼下的牛逼回复更正一下,我表示我也是才知道.. 其实不需要实例化也能查找,你依然直接用GetComponentsIn ...

  2. js字符串函数之split()join()

    split方法用于把一个字符串切割成字符串数组,与join相反 一个参数表示以该参数为切割点, var str="silence's world"; console.log(str ...

  3. 《Java程序设计》第四周学习总结

    20145224-陈颢文 <Java程序设计>第四周学习总结 教材学习内容总结 第六章 继承与多态 ·继承就是面向对象中,子类继承父类,避免重复的行为定义.重复再程序设计上是非常不好的信号 ...

  4. GIT命令(急速学习)

    用过sourceTree,egit(eclipse中的git插件),最后还是感觉git bash顺手:svn早已经不用:   先上几个原来看过的git 教程--书读百遍,其义自见.多看几篇文章才能总结 ...

  5. dubug

    1.设置断点 2.启动servers端的debug模式 3.运行程序,在后台遇到断点时,进入debug调试状态 ============================= 作用域 功能 快捷键 全局 ...

  6. BZOJ3206 [Apio2013]道路费用

    首先我们强制要求几条待定价的边在MST中,建出MST 我们发现这个MST中原来的边是一定要被选上的,所以可以把点缩起来,搞成一棵只有$K$个点的树 然后$2^K$枚举每条边在不在最终的MST中,让在最 ...

  7. BZOJ3933 [CQOI2015]多项式

    $\sum_{k = 0} ^ {n} a_kx^k = \sum_{k = 0} ^ {n} b_k(x - t)^k \Leftrightarrow \sum_{k = 0} ^ {n} a_k( ...

  8. BZOJ1579 [Usaco2009 Feb]Revamping Trails 道路升级

    各种神作不解释QAQQQ 先是写了个作死的spfa本机过了交上去T了... 然后不想写Dijkstra各种自暴自弃... 最后改了一下步骤加了个SLF过了... 首先一个trivial的想法是$dis ...

  9. JavaScript 事件委托的技术原理

    如今的 JavaScript 技术界里最火热的一项技术应该是‘事件委托(event delegation)’了.使用事件委托技术能让你避免对特定的每个节点添加事件监听器:相反,事件监听器是被添加到它们 ...

  10. json_encode时中文编码转正常状态

    function json_encode_cn($data) { $data = json_encode($data); return preg_replace("/\\\u([0-9a-f ...