//Accepted    300 KB    0 ms
 //区间dp
 //dp[i][j] 表示i到j第一个出场的最小diaosizhi
 //对于i到j考虑元素i
 //(1)i第一个出场,diaosizhi为 dp[i+1][j]+sum(i+1--j)
 //(2)i不是第一个出场,而是第k个出场,则i+1到k+i-1这段区间第一个出场,k+i到j第k+1个出场
 //diaoshizhi为dp[i+1][i+k-1] + a[i]*(k-1) + (dp[i+k][j]+k*sum(i+k--j))
 //sum为一段区间的diaosizhi的和,考虑k+i到j第k+1个出场相当于k+i到j第一个出场再加上k*(sum(i+k--j))
 #include <cstdio>
 #include <cstring>
 #include <iostream>
 using namespace std;
 ;
 int dp[imax_n][imax_n];
 int a[imax_n],sum[imax_n];
 int n;
 int min(int a,int b)
 {
     return a<b?a:b;
 }
 void Dp()
 {
     memset(dp,,sizeof(dp));
     ;l<=n;l++)
     {
         ;i<=n;i++)
         {
             ;
             if (j>n) break;
             dp[i][j]=dp[i+][j]+sum[j]-sum[i];
             ;k<=l;k++)
             {
                 dp[i][j]=min(dp[i][j],dp[i+][i+k-]+a[i]*(k-)+dp[i+k][j]+k*(sum[j]-sum[i+k-]));
             }
         }
     }
 }
 int main()
 {
     int T;
     scanf("%d",&T);
     ;t<=T;t++)
     {
         scanf("%d",&n);
         sum[]=;
         ;i<=n;i++)
         {
             scanf("%d",&a[i]);
             sum[i]=sum[i-]+a[i];
         }
         Dp();
         printf(][n]);
     }
     ;
 }
 //Accepted    4792 KB    281 ms
 //区间dp
 //dp[i][j][k] i到j整段区间在第k个出去时的最小花费
 //考虑区间中的第一个元素i,有一下两种情况:
 //(1)i在第k个出去,则i+1到j在第k+1个出去即dp[i+1][j][k+1]
 //(2)i不在第k个出去,则i后必有一段在第k个出去,假设这段为i+1到m
 //则有dp[i+1][m][k]+a[i]*(k+m-i)+dp[m+1][j][k+m-i+1]
 #include <cstdio>
 #include <cstring>
 #include <iostream>
 using namespace std;
 ;
 ;
 int dp[imax_n][imax_n][imax_n];
 int a[imax_n];
 int n;
 int min(int a,int b)
 {
     return a<b?a:b;
 }
 void Dp()
 {
     memset(dp,,sizeof(dp));
     ;i<=n;i++)
     {
         ;k<=n;k++)
         {
             dp[i][i][k]=(k-)*a[i];
         }
     }
     ;i<n;i++)
     {
         ;k<=n;k++)
         {
             dp[i][i+][k]=min((k-)*a[i]+k*a[i+],k*a[i]+(k-)*a[i+]);
         }
     }
     ;l<=n;l++)
     {
         ;i<=n;i++)
         {
             ;
             if (j>n) break;
             ;k<=n;k++)
             {
                 dp[i][j][k]=inf;
                 dp[i][j][k]=min(dp[i][j][k],dp[i+][j][k+]+(k-)*a[i]);
                 ;m<=j;m++)
                 {
                     dp[i][j][k]=min(dp[i][j][k],dp[i+][m][k]+a[i]*(k+m-i-)+dp[m+][j][k++m-i]);
                 }
             }
         }
     }
 }
 int main()
 {
     int T;
     scanf("%d",&T);
     ;t<=T;t++)
     {
         scanf("%d",&n);
         ;i<=n;i++)
         scanf("%d",&a[i]);
         Dp();
         printf(][n][]);
     }
     ;
 }

hdu4283 区间dp的更多相关文章

  1. HDU4283:You Are the One(区间DP)

    Problem Description The TV shows such as You Are the One has been very popular. In order to meet the ...

  2. hdu4283 You Are the One 区间DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4283 自己想了很久还是不会,参考了别人的思路才写的,区间DP还是很弱,继续努力!! 思路: 转载: 题 ...

  3. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  4. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  5. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  6. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  7. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  8. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  9. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

随机推荐

  1. Hive优化

    hive.optimize.cp=true:列裁剪hive.optimize.prunner:分区裁剪hive.limit.optimize.enable=true:优化LIMIT n语句hive.l ...

  2. java 多线程6(线程的·通讯)

    问题1: 为什么wait() 和 notify()是Object类中的方法,而不是Thread类中的方法呢? 答:因为锁是任意对象的所以要在Object类中,如果在Thread类中锁对象不是任意的了. ...

  3. SSIS包部署

    1.ssis包部署可以生成部署文件,部署到sqlserver,再通过sqlserver计划作业来执行. 2.也可以通过shell来调用dtsx ,通过windows计划任务来定时调用exe. 不论是哪 ...

  4. 2D客户端+微端技术总结

    本人于2013年9月23号加入一个页游项目组, 并作为项目组的客户端小组的主程, 带领一个4个人(峰值)的前端小组, 进行微端的开发.微端项目于2014年8月底大体完成, 历时11个月.9月份之后微端 ...

  5. HTML5自学笔记[ 20 ]canvas绘图实例之绘制倒影

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  6. Scrum团队成立,阅读《构建之法》第6~7章,并参考以下链接,发布读后感、提出问题、并简要说明你对Scrum的理解

    Scrum团队成立:  团队名称:神的孩子 团队目标:短期目标,完成O2O模式的第一个平台 团队口号:我们都不是神的孩子 团队照: 角色分配 产品负责人: 许佳仪.决定开发内容和优先级排序,最大化产品 ...

  7. javaNIO学习

    Buffer其实就是是一个容器对象,它包含一些要写入或者刚读出的数据.在NIO中加入Buffer对象,体现了新库与原I/O的一个重要区别.在面向流的I/O中,您将数据直接写入或者将数据直接读到Stre ...

  8. js正则标志/g /i /m的用法,以及实例

    js正则标志/g /i /m的用法,以及实例   正则的思想都是一样的,但是具体的写法会有所不同,在这里提到的/g,/i,/m在其他的地方也许就不能用了. 一,js正则标志/g,/i,/m说明 1,/ ...

  9. iisreset和w3wp的关系

    iisreset是iis自带一个命令行工具.用法: iisreset [computername] /RESTART          停止然后重新启动所有 Internet 服务. /START   ...

  10. response.getWriter().write()与out.print()的区别

    1.首先介绍write()和print()方法的区别:  (1).write():仅支持输出字符类型数据,字符.字符数组.字符串等  (2).print():可以将各种类型(包括Object)的数据通 ...