再回首数据结构—AVL树(二)
前面主要介绍了AVL的基本概念与结构,下面开始详细介绍AVL的实现细节;
AVL树实现的关键点
AVL树与二叉搜索树结构类似,但又有些细微的区别,从上面AVL树的介绍我们知道它需要维护其左右节点平衡,实现AVL树关键在于标注节点高度、计算平衡因子、维护左右子树平衡这三点,下面分别介绍;
标注节点高度
从上面AVL树的定义中我们知道AVL树其左右节点高度差不能超过一,所以我们需要标注出每个节点高度;
1、节点高度为最大的子节点高度加1,其中叶子节点高度为1;
2、1与4叶子节点高度为1,节点3高度为节点4的高度加1,节点2高度为1与3节点中最大的高度加1;
3、节点初始化时高度为1,当在AVL中添加与删除节点时需要维护其节点高度,在AVL添加节点后需要重新计算当前添加节点的高度;
计算平衡因子
标注了每个节点高度后此时可以轻松算出每个节点的平衡因子,只需其节点左子树与右子树的高度差的绝对值即可;
1、1、4叶子节:平衡因子为0
2、节点3:右子树高度为1,左子树其高度为0,0-1绝对值为1,此节点平衡因子为1
3、节点2:左子树高度为1,右子树高度为2,1-2绝对值为1,此节点平衡因子为1
维护左右子树平衡
当在AVL中添加与删除节点时都可能造成AVL变成失去平衡状态使之退化为二叉搜索树,AVL中主要在添加节点与删除节点时需要维护其左右子树的平衡因子;
添加节点
添加节点最终都是添加到叶子节点上,节点添加后其先祖节点可能出现了失去平衡的情况,需要从添加的节点开始向上维护平衡性,向上查找不平衡节点;
右旋转
新增节点在不平衡节点左侧的左侧,同时不平衡节点左子树高度大于等于右子树高度(左子树平衡因子大于等于右子树平衡因子);
添加节点1后第一个不平衡节点为节点3,同时节点3左子树高度大于右子树高度,此时需要不平衡节点向右旋转;
通过如下操作完成节点右旋转;
T = 2.right
2.right = 3
3.left = T
左旋转
新增节点在不平衡节点右侧的右侧,同时不平衡节点右子树高度大于等于左子树高度(右子树平衡因子大于等于左子树平衡因子);
添加节点3后,节点1失去平衡 添加节点3后第一个不平衡节点为节点1,同时节点1右子树高度大于左子树高度,此时需要不平衡节点向左旋转;
通过如下操作完成节点左旋转;
T = 2.left
2.left = 1
1.right = T
先左旋转后右旋转
新增节点在不平衡节点左侧的右侧
先左旋转,变成了右旋转问题,重复上面说所的右旋转;
T = 4.left
Y = T.right
Z = Y.left
Y.left = T
T.right = Z
4.left = Y
先右旋转后左旋转
新增节点在不平衡节点右侧的左侧
先右旋转,变成了左旋转问题,重复上面说所的左旋转;
T = 2.right
Y = T.left
Z = Y.right
Y.right = T
T.left = Z
2.right = Y
删除节点
删除节点是AVL树也可能会失去平衡,因此也需要维护AVL的平衡性;
节点的删除右这么几个步骤:
1、 要删除的节点比当前节点小时在左子树查找
2、 要删除的节点比当前节点大时在右子树查找
3、 要删除节点为当前节点且左子树为空时右子树顶上
4、 要删除节点为当前节点且右子树为空时左子树顶上
5、 要删除节点左右子树均存在时,大于当前节点的最小节点顶上
6、 更新节点高度值
7、 计算节点平衡因子
8、 进行与添加节点时一样的平衡因子维护操作
文章首发地址:Solinx
http://www.solinx.co/archives/1330
再回首数据结构—AVL树(二)的更多相关文章
- 再回首数据结构—AVL树(一)
前面所讲的二叉搜索树有个比较严重致命的问题就是极端情况下当数据以排序好的顺序创建搜索树此时二叉搜索树将退化为链表结构因此性能也大幅度下降,因此为了解决此问题我们下面要介绍的与二叉搜索树非常类似的结构就 ...
- AVL树(二)之 C++的实现
概要 上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样. 目录 1. AVL树的介绍2. AVL树的C++实现3. AVL树的C++测试程序 转载请注明出处:ht ...
- 第三十二篇 玩转数据结构——AVL树(AVL Tree)
1.. 平衡二叉树 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1. 平衡二叉树的高度和节点数量之间的关系也是O(logn) 为二叉树标注节点高度并计算平衡因子 AVL ...
- AVL树(二叉平衡树)详解与实现
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...
- 数据结构-AVL树的旋转
http://blog.csdn.net/GabrieL1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它 ...
- JAVA数据结构--AVL树的实现
AVL树的定义 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是.增 ...
- 数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作
AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树. 2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1). 也就是说,AVL树,本质上 ...
- Java数据结构——AVL树
AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AV ...
- 简单数据结构———AVL树
C - 万恶的二叉树 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64b ...
随机推荐
- MongoDB 学习五:索引
这章我们介绍MongoDB的索引,用来优化查询. 索引介绍 数据库索引有些类似书的目录. 一个查询如果没有使用索引被称为表扫描,意思是它必须像阅读整本书那样去获取一个查询结果.一般来说,我们应尽量避免 ...
- var与变量提升
var是否可以省略 一般情况下,是可以省略var的,但有两点值得注意: 1.var a=1 与 a=1 ,这两条语句一般情况下作用是一样的.但是前者不能用delete删除.不过,绝大多数情况下,这种差 ...
- 如何缓存hbase数据以减少下次取数据的时间
缓存从hbase取得的数据的好处是显而易见的,缓存到本地以后,如果下次的输入能够直接从已缓存的本地文件中取得数据就无需再次访问hbase数据库,这样一来数据量大的话可以节省大量的访问hbase数据库的 ...
- Xcode使用的一些小技巧,值得一看。
有时我们需要对一个已有项目进行重构,改进设计,提高代码质量.以下几个Xcode 4中的功能,会使重构的工作变得轻松很多. 1.打开项目我的项目是Xcode3.x中编辑的,在用Xcode 4 打开时出现 ...
- Hihocoder #1121 二分图一•二分图判定( bfs或者dfs搜索实现 搜索的过程中进行 节点标记 *【模板】)
对于拿到的相亲情况表,我们不妨将其转化成一个图.将每一个人作为一个点(编号1..N),若两个人之间有一场相亲,则在对应的点之间连接一条无向边.(如下图) 因为相亲总是在男女之间进行的,所以每一条边的两 ...
- CodeForces - 450B Jzzhu and Sequences —— 斐波那契数、矩阵快速幂
题目链接:https://vjudge.net/problem/CodeForces-450B B. Jzzhu and Sequences time limit per test 1 second ...
- Java接口测试之使用有道翻译API
写接口测试框架,找了有道翻译API来当测试数据 package com.httpGetTest; import java.beans.Encoder; import java.net.URLEncod ...
- codeforces C. Ilya and Matrix 解题报告
题目链接:http://codeforces.com/problemset/problem/313/C 题目意思:给定 4n 个整数(可以组成 2n × 2n 大小的矩阵),问通过对这些整数进行排列, ...
- 四、mysql数据常用命令
1.显示mysql中所有数据库的名称,show databases; 2.访问某个数据库,use database_name; 3.显示当前数据库中所有表的名称,show tables; 4.查看当前 ...
- 关于layer.open() 弹框的使用
在用 layer.open() 追加渲染HTML的时候,完全看不到效果,皆因layui框架需要在最后用 form.render() 方法来渲染表单才可以看到效果,写法如下: <script> ...