题目描述

题目简述:树版[k取方格数]
众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏。
今天他得到了一款新游戏《XX半岛》,这款游戏有n个场景(scene),某些场景可以通过不同的选择支到达其他场景。所有场景和选择支构成树状结构:开始游戏时在根节点(共通线),叶子节点为结局。每个场景有一个价值,现在桂马开启攻略之神模式,同时攻略k次该游戏,问他观赏到的场景的价值和最大是多少(同一场景观看多次是不能重复得到价值的)
“为什么你还没玩就知道每个场景的价值呢?”
“我已经看到结局了。”

输入

第一行两个正整数n,k
第二行n个正整数,表示每个场景的价值
以下n-1行,每行2个整数a,b,表示a场景有个选择支通向b场景(即a是b的父亲)
保证场景1为根节点

输出

输出一个整数表示答案

样例输入

5 2
4 3 2 1 1
1 2
1 5
2 3
2 4

样例输出

10


题解

贪心+DFS序+树状数组

首先有个显而易见的贪心策略:每次选能够获得最大价值的点。

于是我们只需要设法维护这个贪心即可。

考虑到一个点被使用,影响到的只有它的子树中的节点。所以我们可以按路径长度对DFS序上每个点建立线段树,并线段树维护DFS序上的区间最大值、区间最大值位置,支持修改操作。

所以我们每次操作拿出最大值加到答案中,并对于最大值位置对应的点,在它到根节点的路径上不断向上移动,每到一个点就更新它的子树,把它们的价值减去这个点的权值。直到移动到某个已经被使用了的点停止。(因为如果一个点被使用,则它的祖先节点也一定均被使用)。

时间复杂度为$O((n+k)\log n)$。

#include <cstdio>
#include <algorithm>
#define N 200010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
typedef long long ll;
int fa[N] , head[N] , to[N] , next[N] , cnt , pos[N] , ref[N] , last[N] , tot , mp[N << 2] , del[N];
ll w[N] , v[N] , mx[N << 2] , tag[N << 2];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
v[x] = v[fa[x]] + w[x] , pos[x] = ++tot , ref[tot] = x;
for(i = head[x] ; i ; i = next[i]) dfs(to[i]);
last[x] = tot;
}
void pushup(int x)
{
int l = x << 1 , r = x << 1 | 1;
if(mx[l] > mx[r]) mx[x] = mx[l] , mp[x] = mp[l];
else mx[x] = mx[r] , mp[x] = mp[r];
}
void pushdown(int x)
{
if(tag[x])
{
int l = x << 1 , r = x << 1 | 1;
mx[l] -= tag[x] , mx[r] -= tag[x];
tag[l] += tag[x] , tag[r] += tag[x];
tag[x] = 0;
}
}
void build(int l , int r , int x)
{
if(l == r)
{
mx[x] = v[ref[l]] , mp[x] = l;
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(x);
}
void update(int b , int e , ll a , int l , int r , int x)
{
if(b <= l && r <= e)
{
mx[x] -= a , tag[x] += a;
return;
}
pushdown(x);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
pushup(x);
}
int main()
{
int n , k , i , x , y;
ll ans = 0;
scanf("%d%d" , &n , &k);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &w[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , fa[y] = x , add(x , y);
dfs(1);
build(1 , n , 1);
while(k -- )
{
ans += mx[1] , x = ref[mp[1]];
while(x && !del[x]) update(pos[x] , last[x] , w[x] , 1 , n , 1) , del[x] = 1 , x = fa[x];
}
printf("%lld\n" , ans);
return 0;
}

【bzoj3252】攻略 贪心+DFS序+线段树的更多相关文章

  1. bzoj3252 攻略 贪心+dfs序+线段树

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3252 题解 有一个非常显然的贪心思路:每次选择目前走到那儿能够获得的新权值最大的点. 证明的话 ...

  2. [Bzoj3252]攻略(dfs序+线段树)

    Description 题目链接 Solution 可以想到,每次肯定是拿最大价值为最优 考虑改变树上一个点的值,只会影响它的子树,也就是dfs序上的一个区间, 于是可以以dfs序建线段树,这样就变成 ...

  3. BZOJ 3252题解(贪心+dfs序+线段树)

    题面 传送门 分析 此题做法很多,树形DP,DFS序+线段树,树链剖分都可以做 这里给出DFS序+线段树的代码 我们用线段树维护到根节点路径上节点权值之和的最大值,以及取到最大值的节点编号x 每次从根 ...

  4. BZOJ3252 攻略(贪心+dfs序+线段树)

    考虑贪心,每次选价值最大的链.选完之后对于链上点dfs序暴力修改子树.因为每个点最多被选一次,复杂度非常正确. #include<iostream> #include<cstdio& ...

  5. 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心

    3252: 攻略 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 130[Submit][Status][Discuss] D ...

  6. 【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树

    题目大意 给你一棵有根树,有\(n\)个点.还有一个参数\(k\).你每次要删除一条长度为\(k\)(\(k\)个点)的祖先-后代链,问你最少几次删完.现在有\(q\)个询问,每次给你一个\(k\), ...

  7. Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)

    A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  8. Educational Codeforces Round 6 E dfs序+线段树

    题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...

  9. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

随机推荐

  1. 【TensorFlow入门完全指南】神经网络篇·卷积神经网络

    加载数据集. 这里的keep_prob是dropout的一个参数.dropout是一种随机置零的策略,用来防止模型过拟合. 这里定义两层,上面是卷积层,下面是池化层. 搭建了一层卷积.一层池化.一层卷 ...

  2. UVALive 3983 Robotruck (单调队列,dp)

    如果状态定义为序号和重量的话,决策就是下一个垃圾捡或者不减,但是状态数太多了. 如果只定义序号作为状态的话,决策就变成从前面的某个j一直捡到i才送回垃圾. 这就变成了一个区间选最小值的问题,用单调队列 ...

  3. UVA1602 Lattice Animals 网格动物 (暴力,STL)

    多联骨牌的生成办法,维基上只找到固定的骨牌fix,而free的没有找到. 于是只好写个set判重的简单枚举了. 旋转的操作,可以在坐标轴上画个点,以原点为轴心,逆时针旋转90度,新的点的坐标为(-y, ...

  4. stixel-world和psmnet结合出现的问题

    float32位,4字节 原本的stixel-world是用sgbm生成深度图,并且转成了float型 psmnet保存最终的disparity图是保存成uint16的,skimage.io.imsa ...

  5. java static block

    java 中 静态块的作用 (一)java 静态代码块 静态方法区别一般情况下,如果有些代码必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的;需要在项目启动的时候就初始化,在 ...

  6. 什么是redis的持久化?

    什么是redis的持久化? RDB 持久化:该机制可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot). AOF 持久化:记录服务器执行的所有写操作命令,并在服 ...

  7. QT5:第一章 初始化

    一.简介 二.新建项目 在项目Application中: QT Widgets Application(桌面QT应用) QT Console Application(控制台QT应用) QT for P ...

  8. laydate时间控件绑定回调事件

    onclick="laydate({istime: true, format: 'YYYY-MM-DD',choose:checkDate});" //回调函数内容 functio ...

  9. java,求1-100之和。

    package study01; public class TestWhile { public static void main(String[] args) { int sum = 0; int ...

  10. cocos2dx lua 打印和保存日志

    在2d游戏中,经常会出现闪退或者报错的问题,通过写文本,将日志文件发送给服务端,让后端人员进行分析. 通过lua打印日志在文本文件中: local file = io.open(cc.FileUtil ...