题意:

给出n个数字,选出若干个数字,使得这些数字的乘积是一个完全平方数,问有多少种选法。

解法:

考虑异或方程组,$x_i$表示第i个数字是否选,

注意到只要保证结果中各个质因数都出现偶数次就可保证结果是一个完全平方数。

相当于每个因数出现的次数$mod \  2 = 0$。

这样对于每一个质因子,我们可以得到一个有n个变量的异或方程。

求矩阵中自由元的个数$cnt$,答案就是$2^{cnt}-1$

注意本题中变量数可能远大于方程数,我们不能普通地Jordan。

只要消成阶梯矩阵,并求出矩阵的秩即可。

用$bitmask$压位,可以做到$O(\frac{n^3}{64})$

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <bitset> #define N 2010
#define LL long long
#define P 1000000007LL using namespace std; bitset<N> g[N];
bool v[N];
int tot,prime[N];
LL a[N]; LL solve(int n,int m)
{
LL ans=1LL;
int k=;
for(int i=;i<=m;i++)
{
int t=;
for(int j=k;j<=n;j++)
if(g[j][i])
{
t=j;
break;
}
if(!t)
{
ans=ans*2LL%P;
continue;
}
swap(g[t],g[k]);
for(int j=k+;j<=n;j++)
if(j!=k && g[j][i])
g[j]^=g[k];
k++;
}
return (ans-1LL+P)%P;
} int main()
{
for(int i=;i<=;i++)
{
if(v[i]) continue;
prime[++tot]=i;
for(int j=i+i;j<=;j+=i)
v[j]=;
}
int T,n,Te=;
cin>>T;
while(T--)
{
cin>>n;
for(int i=;i<=tot;i++) g[i].reset();
for(int i=;i<=n;i++)
{
cin>>a[i];
for(int j=;j<=tot;j++)
{
LL tmp=a[i];
while(tmp%prime[j]==)
{
g[j][i]=g[j][i]^;
tmp/=prime[j];
}
}
}
printf("Case #%d:\n",++Te);
cout << solve(tot,n) << endl;
}
return ;
}

Subsets Forming Perfect Squares的更多相关文章

  1. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  2. [LintCode] Perfect Squares 完全平方数

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  3. LeetCode Perfect Squares

    原题链接在这里:https://leetcode.com/problems/perfect-squares/ 题目: Given a positive integer n, find the leas ...

  4. Perfect Squares

    Perfect Squares Total Accepted: 18854 Total Submissions: 63048 Difficulty: Medium Given a positive i ...

  5. CF914A Perfect Squares

    CF914A Perfect Squares 题意翻译 给定一组有n个整数的数组a1,a2,…,an.找出这组数中的最大非完全平方数. 完全平方数是指有这样的一个数x,存在整数y,使得x=y^2y2  ...

  6. [LeetCode] 0279. Perfect Squares 完全平方数

    题目 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9 ...

  7. LeetCode 279. 完全平方数(Perfect Squares) 7

    279. 完全平方数 279. Perfect Squares 题目描述 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数 ...

  8. Leetcode之广度优先搜索(BFS)专题-279. 完全平方数(Perfect Squares)

    Leetcode之广度优先搜索(BFS)专题-279. 完全平方数(Perfect Squares) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ar ...

  9. 花式求解 LeetCode 279题-Perfect Squares

    原文地址 https://www.jianshu.com/p/2925f4d7511b 迫于就业的压力,不得不先放下 iOS 开发的学习,开始走上漫漫刷题路. 今天我想聊聊 LeetCode 上的第2 ...

随机推荐

  1. Django开发微信公众平台

    处理微信发来的信息,实际上就是处理xml的过程.先写xml工具类 # -*- coding:utf-8 -*- from xml.dom import minidom from Web.model.W ...

  2. Cent OS编译环境安装

    在进行编译的时候发现总是缺少一些编译的包,安装上了一个,却又少了另一个,最后百度出来结果,记录一下: yum install gcc gcc-c++ gcc-g77 flex bison autoco ...

  3. php错误封装类

    1.创建MyErrorHandler.php文件 代码如下: <?php class MyErrorHandler { public $message; public $filename; pu ...

  4. 数据库如何让自增id重置

    sql语句:truncate tablename;    会清空表的所有记录,并且使自增的id重置. 另外,navicat的截断表,就是这个功能. 它的清空表只会清空数据,不能使自增的id重置.

  5. linux安装ssh(转载)

    CentOS安装ssh最笨的方法:yum install ssh yum install openssh-server/etc/init.d/sshd status看sshd服务的状态/etc/ini ...

  6. 目标检测之harr---角点检测harr 的opencv实现

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接: http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨) ...

  7. gcc參数总结

    /*gcc 命令总结*/ 补充下gcc的知识,免得被大自然说编译原理不行.. 1.-o 參数 參数说明: -o參数用来指定生成程序的名字 gcc test.c 会编译出一个名为a.out的程序 gcc ...

  8. 【转】IDA 调试 Android

    最近都在学一些反编译安卓相关的东西,其实网上有很多教程关于用 IDA 调试 Android 的过程,主要记录一下我遇到的坑 首先 Android手机要是root过的 还要注意的一点是apk中的 And ...

  9. 用JS写九九乘法表

    本来JS部分觉得就不是很好,结果经过一个寒假,在家的日子过的太舒适,基本把学的都快忘干净了,今天老师一说九九乘法表,除了脑子里浮现出要满足的条件,其他的都不记得了,赶快整理了一下: <scrip ...

  10. You're trying to decode an invalid JSON String JSON返回有解析问题

    SpringMVC架构的web程序,通常用map返回消息在浏览器中显示,但是实际中报下列错误“”You're trying to decode an invalid JSON String“返回的字符 ...