Mixtures of Gaussian

这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计。假设我们有一组训练样本x(1),x(2),...x(m),因为是unsupervised的学习问题,所以我们没有任何y的信息。

我们希望利用一个联合分布p(x(i),z(i))=p(x(i)|z(i))p(z(i))来拟合这些数据, 其中z(i)∼Multinomial(ϕ) (ϕj⩾0, ∑kj=1ϕj=1,参数ϕj给出了概率p(z(i)=j)),并且 x(i)|z(i)=j∼N(μj,Σj),我们让k表示z(i)可能值的个数,因此在这个模型中,每一个训练样本x(i)是由随机取某一个值的变量z(i)生成的,所以x(i)是从k个的高斯分布中的一个(由z(i)指示)提取出来的。这个称为高斯混合模型,我们也要注意到z(i)是隐含的随机变量,高斯混合模型涉及的参数是ϕ,μ,Σ,为了估计这些变量,我们可以建立如下的表达式:

l(ϕ,μ,Σ)=∑i=1mlogp(x(i);ϕ,μ,Σ)=∑i=1mlog∑z(i)=1kp(x(i)|z(i);μ,Σ)p(z(i),ϕ)

我们发现,通过求偏导数求极值的方法,无法得到这些参数的解,从上面的表达式可以看出,随机变量z(i)告诉了我们x(i)是从k个高斯分布中的其中一个生成的,如果我们知道是哪一个高斯分布,或者说如果知道z(i)的值,那我们可以利用最大似然估计的方法估计参数

ϕ,μ,Σ,如果z(i)已知,那么上式可以写成:

l(ϕ,μ,Σ)=∑i=1mlogp(x(i)|z(i);μ,Σ)+logp(z(i),ϕ)

利用最大似然估计,可以求得这些参数为:

ϕjμjΣj=1m∑i=1m1{z(i)=j}=∑mi=11{z(i)=j}x(i)∑mi=11{z(i)=j}=∑mi=11{z(i)=j}(x(i)−μj)(x(i)−μj)T∑mi=11{z(i)=j}

从上面的表达式可以看出,如果z(i)的值已知,那么参数ϕ,μ,Σ的估计与之前介绍的Gaussian discriminant analysis 模型对参数的估计是一样的,这里的z(i)就像Gaussian discriminant analysis 模型中的输出y一样。

但是遗憾的是,我们不知道z(i)的值,所以这里我们要介绍另外一种unsupervised的学习方法,称为EM算法,EM算法主要分为两步,在E-step,我们主要对z(i)的值做猜测,在M-step,我们在E-step假设的基础上,利用最大似然估计求参数ϕ,μ,Σ,算法主要流程如下:

Repeat until convergence {

E-step: 对于每一个i,j,设置:

w(i)j:=p(z(i)=j|x(i);ϕ,μ,Σ)

M-step: 跟新如下参数:

ϕj:=1m∑i=1mw(i)j
μj:=∑mi=1w(i)jx(i)∑mi=1w(i)j
Σj:=∑mi=1w(i)j(x(i)−μj)(x(i)−μj)T∑mi=1w(i)j

}

在E-step,我们可以通过给定的x(i)和当前估计的参数计算z(i)的后验概率,利用贝叶斯估计,我们可以得到:

p(z(i)=j|x(i);ϕ,μ,Σ)=p(x(i)|z(i)=j;μ,Σ)p(z(i)=j,ϕ)∑kl=1p(x(i)|z(i)=l;μ,Σ)p(z(i)=l,ϕ)

这里,p(x(i)|z(i)=j;μ,Σ)通过计算一个均值为μj,协方差为Σj的高斯分布在x(i)处的概率密度得到,p(z(i)=j,ϕ)

是由ϕj给出,在E-step计算的w(i)j的值,表示我们对z(i)的一种弱估计。

同样,我们也可以将M-step的参数跟新与知道z(i)确切值的参数估计的表达式进行对比,可以看出两者是一致的,只不过前面的表达式1{z(i)=j}指出了我们利用哪个高斯分布,而现在换成了w(i)j。

EM 算法同样会让人联想起k均值算法,k均值是硬聚类,将样本聚到某一类里,而EM算法是弱聚类,样本所属的高斯分布由w(i)j估计。

参考来源:

Andrew Ng, “Machine Learning”, Stanford University.

机器学习 : 高斯混合模型及EM算法的更多相关文章

  1. 高斯混合模型的EM算法

    高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...

  2. SIGAI机器学习第二十三集 高斯混合模型与EM算法

    讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期 ...

  3. 机器学习基础知识笔记(一)-- 极大似然估计、高斯混合模型与EM算法

    似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p( ...

  4. 机器学习之高斯混合模型及EM算法

    第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类 ...

  5. 高斯混合模型与EM算法

    对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签. 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i ...

  6. 聚类之高斯混合模型与EM算法

    一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为 ...

  7. 高斯混合和EM算法

    首先介绍高斯混合模型: 高斯混合模型是指具有以下形式的概率分布模型: 一般其他分布的混合模型用相应的概率密度代替(1)式中的高斯分布密度即可. 给定训练集,我们希望构建该数据联合分布 这里,其中是概率 ...

  8. 机器学习笔记—混合高斯和 EM 算法

    本文介绍密度估计的 EM(Expectation-Maximization,期望最大). 假设有 {x(1),...,x(m)},因为是无监督学习算法,所以没有 y(i). 我们通过指定联合分布 p( ...

  9. 【机器学习】GMM和EM算法

    机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...

随机推荐

  1. android与服务器交互总结(json,post,xUtils,Volley)

    http://www.23code.com/tu-biao-chart/ 从无到有,从来没有接触过Json,以及与服务器的交互.然后慢慢的熟悉,了解了一点.把我学到的东西简单的做个总结,也做个记录,万 ...

  2. DevExpress.XtraGrid 【转】

    http://www.cnblogs.com/zeroone/p/4574539.html DevExpress.XtraGrid控件使用 该控件类是一个表格控件,但是其具有很多方便而使用的功能,例如 ...

  3. Solaris磁盘配额

    磁盘配额:就跟汽车行驶速度一样.我们设定. 添加rq标志,使其支持配额功能. 命令:quota ,打开就是quotaon 对ZFS文件系统进行设置配额: 当设置quota=none 则可以取消配额设置 ...

  4. Foundation框架 - NSException类

    NSException类 WBStudentManager.h #import <Foundation/Foundation.h> NSString* const NameInvalidE ...

  5. Ansible 汇总

    不错的博客:https://www.cnblogs.com/EWWE/p/8146083.html 修改文件权限: 首先需要 vi /etc/ansible/hosts (用pip install, ...

  6. [概率dp] hdu 5378 Leader in Tree Land

    题意: 给你一颗以1位根节点的树.我们定义对于每一个子树,节点权值最大的权值记为这个子树的权值,为你将1~n放到这个树里 满足最大权值仅仅有k个的组合数是多少. 思路: 我们能够知道以每一个节点为子树 ...

  7. Kubernetes调度之亲和与反亲和

    系列目录 部署pod时,大多数情况下kubernetes的调度程序能将pod调度到集群中合适的节点上.但有些情况下用户需要对pod调度到哪个节点上施加更多控制,比如将特定pod部署到拥有SSD存储节点 ...

  8. 官方Caffe-windows 配置与示例运行

    http://blog.csdn.net/guoyk1990/article/details/52909864 标签: caffewindows配置训练自己的数据 2016-10-24 13:34 1 ...

  9. vim tips 集锦

    删除文件中的空行 :g/^$/d g 表示 global,全文件 ^ 是行开始,$ 是行结束 d 表示删除该 这里只能匹配到没有白空符的空行,假如要删除有空白符的空行,则使用: :g/^\s*$/d ...

  10. asp识别手机端

    <script type="text/javascript"> var mobileAgent = new Array("iphone", &quo ...