Careercup | Chapter 3
3.1 Describe how you could use a single array to implement three stacks.
Flexible Divisions的方案,当某个栈满了之后,需要把相邻的栈调整好,这是一个递归的过程。
每个stack有一些属性,所以不妨将每个stack封闭起来,我这里是用一个private的struct来实现,方便,同时对外部又不可见。
对于一些常用的操作,比如环形数组取下一个数,前一个数,都可以封装起来。
class XNStack {
public:
XNStack(int n, int capacity) : stackTotal(n), capacity(capacity), total() {
buff = new int[capacity];
stacks = new XStackData[n];
for (int i = ; i < n; ++i) {
stacks[i].top = i * capacity / n;
stacks[i].capacity = capacity / n;
stacks[i].size = ;
}
if (capacity % n) stacks[n - ].capacity++;
}
~XNStack() {
delete[] buff;
delete[] stacks;
}
void push(int stackNum, int v) {
cout << "push " << stackNum << " " << v << endl;
if (total >= capacity) {
cout << "full" << endl;
return; // full
}
total++;
if (stacks[stackNum].size < stacks[stackNum].capacity) {
buff[stacks[stackNum].top] = v;
stacks[stackNum].top = next(stacks[stackNum].top);
stacks[stackNum].size++;
} else {
int n = stackNum + ;
if (n >= stackTotal) n = ;
shift(n);
buff[stacks[stackNum].top] = v;
stacks[stackNum].top = next(stacks[stackNum].top);
stacks[stackNum].size++;
stacks[stackNum].capacity++;
}
}
void pop(int stackNum) {
cout << "pop " << stackNum << endl;
if (stacks[stackNum].size < ) {
cout << "empty" << endl;
return;
}
total--;
stacks[stackNum].size--;
stacks[stackNum].top = pre(stacks[stackNum].top);
}
int top(int stackNum) {
return buff[pre(stacks[stackNum].top)];
}
bool empty(int stackNum) const {
return stacks[stackNum].size == ;
}
void print() {
for (int i = ; i < stackTotal; ++i) {
cout << "stack[" << i << "]: size[" << stacks[i].size << "] capacity[" << stacks[i].capacity << "] top[" << stacks[i].top << "]" << endl;
}
for (int i = ; i < capacity; ++i) {
cout << buff[i] << " ";
}
cout << endl;
}
private:
struct XStackData {
int top;
int capacity;
int size;
};
int next(int i) {
i++;
if (i >= capacity) i = ;
return i;
}
int pre(int i) {
i--;
if (i < ) i = capacity - ;
return i;
}
void shift(int stackNum) {
if (stacks[stackNum].size >= stacks[stackNum].capacity) {
int next = stackNum + ;
if (next >= stackTotal) next = ;
shift(next);
} else {
stacks[stackNum].capacity--; //最后一个移动的区间要把capacity减1,因为移动的空间就是由它来的
}
int j = stacks[stackNum].top;
for (int i = ; i < stacks[stackNum].capacity; ++i) {
int p = pre(j);
buff[j] = buff[p];
j = p;
}
stacks[stackNum].top = next(stacks[stackNum].top);
}
int *buff;
XStackData *stacks;
int capacity;
int total;
int stackTotal;
};
3.2 How would you design a stack which, in addition to push and pop, also has a function min which returns the minimum element? Push, pop and min should all operate in 0(1) time.
两个栈。
3.3 Imagine a (literal) stack of plates. If the stack gets too high, it migh t topple. Therefore, in real life, we would likely start a new stack when the previous stack exceeds some threshold. Implement a data structure SetOfStacks that mimics this. SetOfStacks should be composed of several stacks and should create a new stack once the previous one exceeds capacity. SetOfStacks.push() and SetOfStacks.pop () should behave identically to a single stack (that is, pop () should return the same values as it would if there were just a single stack).
FOLLOW UP
Implement a function popAt(int index) which performs a pop operation on a specific sub-stack.
把3.1 改一改就好了。这样在实现确保每个stack是full就比较简单了,只需要修改top指针,不需要真正地搬动。当然careercup里面的解法也是对的。
3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order of size from top to bottom (i.e., each disk sits on top of an even larger one). You have the following constraints:
(T) Only one disk can be moved at a time.
(2) A disk is slid off the top of one tower onto the next rod.
(3) A disk can only be placed on top of a larger disk.
Write a program to move the disks from the first tower to the last using Stacks.
汉诺塔。经典递归问题。
3.5 Implement a MyQueue class which implements a queue using two stacks.
两个栈,一个用来进队列,一个用来出队列。
3.6 Write a program to sort a stack in ascending order (with biggest items on top). You may use at most one additional stack to hold items, but you may not copy the elements into any other data structure (such as an array). The stack supports the following operations: push, pop, peek, and isEmpty.
插入排序。使得缓存栈是从栈顶到栈底递增,最后再把缓存栈的东西倒到原来的栈中。注意代码重构。
3.7 An animal shelter holds only dogs and cats, and operates on a strictly "first in, first out" basis. People must adopt either the "oldest" (based on arrival time) of all animals at the shelter, or they can select whether they would prefer a dog or a cat (and will receive the oldest animal of that type). They cannot select which specific animal they would like. Create the data structures to maintain this system and implement operations such as enqueue, dequeueAny, dequeueDog and dequeueCat. You may use the built-in L inkedL ist data structure.
感觉career cup的题虽然简单些,但是可以检查你的代码简洁功力,还有OO design的功力。
纯虚的析构函数是需要一个实现体的,不然通不过编译,link error。
设计方面,animal必须是抽象类,dog和cat是它的子类。
class XStack {
public:
XStack(int capacity):capacity(capacity), t() {
buff = new int[capacity];
}
~XStack() {
delete[] buff;
}
void push(int v) {
if (t >= capacity) return;
buff[t++] = v;
}
void pop() {
if (t <= ) return;
t--;
}
int top() {
if (t == ) return ;
return buff[t - ];
}
int size() const {
return t;
}
bool empty() const {
return t == ;
}
void print() const {
for (int i = ; i < t; ++i) {
cout << buff[i] << " ";
}
cout << endl;
}
private:
int *buff;
int capacity;
int t;
};
// 3.2
class XMinStack: public XStack {
public:
XMinStack(int capacity):XStack(capacity), minStack(capacity) {} // should have a constructor
void push(int v) {
XStack::push(v); // call the superclass method
if (empty() || v < minStack.top()) {
minStack.push(v);
}
}
void pop() {
if (!empty() && !minStack.empty() && top() == minStack.top()) {
minStack.pop();
}
XStack::pop();
}
int min() {
if (minStack.empty()) return ;
return minStack.top();
}
private:
XStack minStack;
};
// 3.4
class Tower : public XStack {
public:
Tower():XStack() {} // constructor!!
};
// 3.4 move 1...n from t1 to t3, t2 is cache
void moveDisk(int n, Tower &t1, Tower &t2, Tower &t3) {
if (n <= ) return;
moveDisk(n - , t1, t3, t2); // t2 is destination here
t3.push(t1.top());
t1.pop();
moveDisk(n - , t2, t1, t3); // t2 is origin here
}
class XQueue {
public:
XQueue(int capacity):in(capacity), out(capacity) {
}
void enqueue(int v) {
in.push(v);
}
int dequeue() {
int v = front();
out.pop();
return v;
}
int front() {
if (out.empty()) {
while (!in.empty()) {
out.push(in.top());
in.pop();
}
}
int v = out.top();
return v;
}
private:
XStack in;
XStack out;
};
// 3.6, insertion sort
void sort(XStack &st) {
XStack tmp(st.size());
while (!st.empty()) {
/*if (tmp.empty() || st.top() <= tmp.top()) { // this part is not necessary
tmp.push(st.top());
st.pop();
} else { */
int t = st.top();
st.pop();
while (!tmp.empty() && tmp.top() < t) {
st.push(tmp.top());
tmp.pop();
}
tmp.push(t);
//}
}
while (!tmp.empty()) {
st.push(tmp.top());
tmp.pop();
}
}
// 3.7
class Animal { // abstract class
public:
Animal(int type):type(type) {}
virtual ~Animal() = ; // pure virtual
int getOrder() const { return order; }
void setOrder(int order) {this->order = order;}
int getType() const { return type; }
enum {CAT = , DOG = };
private:
int order;
int type;
};
Animal::~Animal() {} // !!!! without this, link error occur
class Dog : public Animal {
public:
Dog():Animal(Animal::DOG) {}
~Dog() {}
};
class Cat : public Animal {
public:
Cat():Animal(Animal::CAT) {}
~Cat() {}
};
class AnimalQueue {
public:
AnimalQueue():order() {}
void enqueue(Animal* a) {
a->setOrder(order++);
if (a->getType() == Animal::CAT) cats.push_back((Cat*)a);
else if (a->getType() == Animal::DOG) dogs.push_back((Dog*)a);
}
Animal* dequeueAny() {
Animal* cat = cats.empty() ? NULL : cats.front(); //when empty
Animal* dog = dogs.empty() ? NULL : dogs.front();
if (dog == NULL || (cat != NULL && cat->getOrder() < dog->getOrder())) {
cats.pop_front();
return cat;
} else {
dogs.pop_front();
return dog;
}
}
Dog* dequeueDog() {
if (dogs.empty()) return NULL;
Dog* dog = dogs.front();
dogs.pop_front();
return dog;
}
Cat* dequeueCat() {
if (cats.empty()) return NULL;
Cat* cat = cats.front();
cats.pop_front();
return cat;
}
bool empty() const {
return cats.empty() && dogs.empty();
}
private:
int order;
list<Cat*> cats;
list<Dog*> dogs;
};
Careercup | Chapter 3的更多相关文章
- Careercup | Chapter 1
1.1 Implement an algorithm to determine if a string has all unique characters. What if you cannot us ...
- Careercup | Chapter 2
链表的题里面,快慢指针.双指针用得很多. 2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow w ...
- Careercup | Chapter 8
8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...
- Careercup | Chapter 7
7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...
- CareerCup Chapter 9 Sorting and Searching
9.1 You are given two sorted arrays, A and B, and A has a large enough buffer at the end to hold B. ...
- CareerCup chapter 1 Arrays and Strings
1.Implement an algorithm to determine if a string has all unique characters What if you can not use ...
- CareerCup Chapter 4 Trees and Graphs
struct TreeNode{ int val; TreeNode* left; TreeNode* right; TreeNode(int val):val(val),left(NULL),rig ...
- Careercup | Chapter 6
6.2 There is an 8x8 chess board in which two diagonally opposite corners have been cut off. You are ...
- Careercup | Chapter 5
5.1 You are given two 32-bit numbers, N andM, and two bit positions, i and j. Write a method to inse ...
随机推荐
- 【php】【异步】php实现异步的几种方法
请参考 4种php常用的异步执行方式 ajax 和 img 的 src 属性 系统指令调用 (在php代码里面调用系统指令) curl socket通信
- ubuntu中卸载没有安装完全的软件包
sudo apt-get autoclean sudo apt-get clean sudo apt-get autoremove
- python 面对对象基础
目录 面向对象基础 面向对象编程(抽象) 类与对象 给对象定制独有的特征 对象的属性查找顺序 类与对象的绑定方法 类与数据类型 对象的高度整合 面向对象基础 面向对象编程(抽象) 回顾一下 面向过程编 ...
- 采用Atlas+Keepalived实现MySQL读写分离、读负载均衡
========================================================================================== 一.基础介绍 == ...
- Altium Designer入门学习笔记4:PCB设计中各层的含义
阻焊层:solder mask,是指板子上要上绿油的部分:因为它是负片输出,所以实际上有solder mask的部分实际效果并不上绿油,而是镀锡,呈银白色! 助焊层:paste mask,是机器贴片时 ...
- How to setup multimedia on CentOS 7
You will need to also install the EPEL repository as nux-dextop depends on this for some of its pack ...
- istio的原理和功能介绍
目录 1 什么是Istio 2 架构和原理 2.1 Proxy代理 2.2 Mixer混合器 2.3 Pilot引导 2.4 Citadel堡垒 2.5 Galley 3 功能列表 4 性能评估 1 ...
- selenium2-元素管理方式及解析
1.管理文件格式:yaml 2.Yaml里面的内容格式: 3.格式说明: baidu_input后面接上":",直接回车,然后空两格 type与value这两个key是固定 ...
- Http协议——基本概念
一.浏览网页的过程 用户输入一个url,浏览器根据url给web服务器发送一个Request,web服务器接收到Request后进行处理,并返回浏览器一个Response,可以响应一个静态页面或者图片 ...
- loj2276 「HAOI2017」新型城市化
给出的图是一个二分图(显然--吗),一个图的最大团=其补图的最大独立集,因此二分图的最大独立集就是补图的最大团. 欲使补图最大团变大,则要最大独立集变大.二分图最大独立集=点数-最小点覆盖.最小点覆盖 ...