题目链接:

http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=19051

题意:

有两个长度分别为p+1和q+1的由1到n2之前的整数组成的序列,每个序列的元素各不相等,两个序列第一个元素均为1。求两个序列的最长公共子序列。

分析:

LCS的复杂度为O(p∗q),这题p,q最大为250 * 250,必T无疑。

注意题目说的每个序列的元素各不相等,那么就能保证我们可以把序列A的元素用1到p+1重新进行赋值,把B中元素根据A的赋值找到对应的标号,用0表示没有出现过,那么问题就可以转化为LIS啦,时间复杂度O(nlogn),可以过了。

有关LIS的内容这里有一个http://blog.csdn.net/yukizzz/article/details/50620631

代码:

/*************************************************************************
> File Name: 10635.cpp
> Author: jiangyuzhu
> Mail: 834138558@qq.com
> Created Time: Sat 18 Jun 2016 08:57:43 PM CST
************************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
using namespace std;
#define sa(n) scanf("%d", &(n));
typedef pair<int, int>p;
const int maxn = 250 + 5, mod = 1e9 + 7, oo = 0x3f3f3f3f;
int a[maxn * maxn], b[maxn * maxn], nb[maxn * maxn];
int pos[maxn * maxn];
int dp[maxn * maxn];
int main (void)
{
int t;sa(t);
for(int kas = 1; kas <= t; kas++){
int n, p, q;sa(n);sa(p);sa(q);
memset(pos, 0, sizeof(pos));
for(int i = 0; i <= p; i++){
sa(a[i]);
pos[a[i]] = i;
}
memset(nb, 0, sizeof(nb));
for(int i = 0; i <= q; i++){
sa(b[i]);
nb[i] = pos[b[i]];
}
memset(dp, 0x3f, sizeof(dp));
for(int i = 0; i <= q; i++){
*lower_bound(dp, dp + q + 1, nb[i]) = nb[i];
}
int ans = lower_bound(dp, dp + q + 1, oo) - dp;
printf("Case %d: %d\n", kas, ans);
}
return 0;
}

UVA 10635 Prince and Princess【LCS 问题转换为 LIS】的更多相关文章

  1. UVA 10635 - Prince and Princess LCS转化为LIS

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. uva 10635 - Prince and Princess(LCS)

    题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...

  3. UVA - 10635 Prince and Princess LCS转LIS

    题目链接: http://bak.vjudge.net/problem/UVA-10635 Prince and Princess Time Limit: 3000MS 题意 给你两个数组,求他们的最 ...

  4. Uva 10635 - Prince and Princess LCS/LIS

    两个长度分别为p+1和q+1的由1到n2之前的整数组成的序列,每个序列的元素各不相等,两个序列第一个元素均为1.求两个序列的最长公共子序列 https://uva.onlinejudge.org/in ...

  5. UVA 10635 Prince and Princess—— 求LCS(最长公共子序列)转换成 求LIS(最长递增子序列)

    题目大意:有n*n个方格,王子有一条走法,依次经过m个格子,公主有一种走法,依次经过n个格子(不会重复走),问他们删去一些步数后,重叠步数的最大值. 显然是一个LCS,我一看到就高高兴兴的打了个板子上 ...

  6. Uva 10635 - Prince and Princess 问题转化,元素互不相同(在自身序列中独特)的两个数列的LCS,LIS 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  7. uva 10635 Prince and Princess(LCS成问题LIS问题O(nlogn))

    标题效果:有两个长度p+1和q+1该序列.的各种元素的每个序列不是相互同.并1~n^2之间的整数.个序列的第一个元素均为1. 求出A和B的最长公共子序列长度. 分析:本题是LCS问题,可是p*q< ...

  8. Uva 10635 Prince and Princess (LCS变形LIS)

    直接LCS是时间复杂度是O(p*q)的,但是序列元素各不相同,只要把其中一个序列映射成有序的, 另外一个序列再做相同的映射,没有的直接删掉,就变成了求另一个序列LIS. #include<bit ...

  9. UVA - 10635 Prince and Princess(LCS,可转化为LIS)

    题意:有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n2的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 分析: A = {1,7,5,4,8,3, ...

随机推荐

  1. 记一次header跨域与cookie共享

       最近把左边的传统模式,换成了右边通过js直接调api拿数据并渲染,于是变出现了ajax的跨域问题:XMLHttpRequest cannot load http://api.abc.com/?s ...

  2. java代码导出数据到Excel、js导出数据到Excel(三)

     jsp内容忽略,仅写个出发按钮:          <button style="width: 100px" onclick="expertExcel()&quo ...

  3. [译]The Python Tutorial#4. More Control Flow Tools

    [译]The Python Tutorial#More Control Flow Tools 除了刚才介绍的while语句之外,Python也从其他语言借鉴了其他流程控制语句,并做了相应改变. 4.1 ...

  4. Tourists Gym - 101002I LCA——dfs+RMQ在线算法

    LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点u和v最近的公共祖先(另一种说法,离树根最远的公共祖先). 知识需求:1)RMQ的S ...

  5. linux+ARM学习路线

    学习步骤如下: 1.Linux 基础 安装Linux操作系统 Linux文件系统 Linux常用命令 Linux启动过程详解 熟悉Linux服务能够独立安装Linux操作系统 能够熟练使用Linux系 ...

  6. BZOJ 3590: [Snoi2013]Quare

    首先有一个性质,一个双联通图一定可以拆成一个小的双联通子图和一条链 一个点可以视为权值为0的双联通图或者一个点的链 状压DP,枚举子集 O(3^n*n^2) #include<cstdio> ...

  7. BZOJ 4368: [IOI2015]boxes纪念品盒

    三种路径,左边出去左边回来,右边出去右边回来,绕一圈 绕一圈的路径最多出现一次 那么绕一圈的路径覆盖的点一定是左边半圈的右边和右边半圈的左边 枚举绕一圈的路径的起始点(一定要枚举,这一步不能贪心),更 ...

  8. UVa 12299 线段树 单点更新 RMQ with Shifts

    因为shift操作中的数不多,所以直接用单点更新模拟一下就好了. 太久不写线段树,手好生啊,不是这错一下就是那错一下. PS:输入写的我有点蛋疼,不知道谁有没有更好的写法. #include < ...

  9. Python类元编程

    类元编程是指在运行时创建或定制类.在Python中,类是一等对象,因此任何时候都可以使用函数创建新类,而无需用class关键字.类装饰器也是函数,不过能够审查.修改,甚至把被装饰的类替换成其他类.元类 ...

  10. zuul session 不一致的问题

    配置文件: #不加这句话导致session不一致zuul.routes.intelligentsia-authority.sensitiveHeaders = Authorization 过滤器里面 ...