codeforces 569C C. Primes or Palindromes?(素数筛+dp)
题目链接:
3 seconds
256 megabytes
standard input
standard output
Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!
Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.
Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.
One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes no larger than n, rub(n) — the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.
He asked you to solve the following problem: for a given value of the coefficient A find the maximum n, such that π(n) ≤ A·rub(n).
The input consists of two positive integers p, q, the numerator and denominator of the fraction that is the value of A (
,
).
If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).
1 1
40
1 42
1
6 4
172 题意: 问满足pi[n]/rub[n]<=p/q的最大的n是多少; 思路: pi[i]和rub[i]都随着i的增大而增大,且pi[i]/rub[i]的值也随着增大,(小于10的数特殊);p/q给有范围,可以算一下大约1200000时pi[i]/rub[i]已经大约42了;所以暴力找到那个最大的n; AC代码:
/*2014300227 569C - 28 GNU C++11 Accepted 61 ms 14092 KB*/
#include <bits/stdc++.h>
using namespace std;
const int N=12e5+;
typedef long long ll;
const double PI=acos(-1.0);
int p,q,pi[N],vis[N],rub[N];
void get_pi()//素数筛+dp得到pi[i]
{
memset(pi,,sizeof(pi));
pi[]=;
for(int i=;i<N;i++)
{
if(!pi[i])
{
for(int j=;j*i<N;j++)
{
pi[i*j]=;
}
pi[i]=pi[i-]+;
}
else pi[i]=pi[i-];
}
}
int is_pal(int x)//判断一个数是不是回文数;
{
int s=,y=x;
while(y)
{
s*=;
s+=y%;
y/=;
}
if(s==x)return ;
return ;
}
void get_rub()
{
rub[]=;
for(int i=;i<N;i++)
{
if(is_pal(i))rub[i]=rub[i-]+;
else rub[i]=rub[i-];
}
}
int check(int x)
{
if(pi[x]*q<=p*rub[x])return ;
return ; }
int get_ans()
{
int ans=;
for(int i=;i<N;i++)
{
if(check(i))ans=i;
}
if(ans==)printf("Palindromic tree is better than splay tree\n");
else printf("%d\n",ans);
}
int main()
{
get_pi();
get_rub();
//cout<<pi[1200000]*1.0/(rub[1200000]*1.0);
scanf("%d%d",&p,&q);
get_ans(); return ;
}
codeforces 569C C. Primes or Palindromes?(素数筛+dp)的更多相关文章
- 【34.88%】【codeforces 569C】Primes or Palindromes?
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- codeforces 414A A. Mashmokh and Numbers(素数筛)
题目链接: A. Mashmokh and Numbers time limit per test 1 second memory limit per test 256 megabytes input ...
- Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力
题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...
- Codeforces Round #257 (Div. 1) C. Jzzhu and Apples (素数筛)
题目链接:http://codeforces.com/problemset/problem/449/C 给你n个数,从1到n.然后从这些数中挑选出不互质的数对最多有多少对. 先是素数筛,显然2的倍数的 ...
- Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力
A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...
- Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力
C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #511 (Div. 2)-C - Enlarge GCD (素数筛)
传送门:http://codeforces.com/contest/1047/problem/C 题意: 给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值. 思路: 自己一 ...
- codeforces 822 D. My pretty girl Noora(dp+素数筛)
题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...
- Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)
385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...
随机推荐
- Ruby之Rspec的报错解决
#enconding:utf-8 require 'selenium-webdriver' require 'rspec' describe "baidu main page" d ...
- Windows 2008 R2 Server FTP使用问题
Windows 2008 R2 Server FTP必须在安装IIS的时候.安装IIS6.0兼职性. 否则建的FTP网站仅仅有关了防火墙才干使用. 原因未知.
- zabbix agent shell一键安装脚本
#!/bin/bash basepath=$(cd ``; pwd) SHELL_DIR="${basepath}/shell" PACKAGE_DIR="${basep ...
- Java 加载器
类的加载是由类加载器完成的,类加载器包括: 根加载器( BootStrap ).扩展加载器( Extension ).系统加载器( System )和用户自定义类加载器( java.lang.Clas ...
- WikiCFP--A Wiki for Calls For Papers
WikiCFP--A Wiki for Calls For Papers ---->www.wikicfp.com/cfp/
- Android 进阶自定义 ViewGroup 自定义布局
前言 在我们的实际应用中, 经常需要用到自定义控件,比如自定义圆形头像,自定义计步器等等.但有时我们不仅需要自定义控件,举个例子,FloatingActionButton 大家都很常用,所以大家也很经 ...
- rst2pdf 中文
上篇说到用pandoc转换为reST为pdf是使用LaTeX作为中间格式的,而今天要说的rst2pdf貌似是直接转换为pdf的. 安装和调用 rst2pdf目前只支持Python2.7,因此在创建vi ...
- Tsung 初步介绍安装
tsung是erlang的一个开源的一个压力测试工具,可以测试包括HTTP, WebDAV, Mysql, PostgreSQL, LDAP, and XMPP/Jabber等服务器.针对 HTTP ...
- Python 深入剖析SocketServer模块(一)(V2.7.11)
一.简介(翻译) 通用socket server 类 该模块尽力从各种不同的方面定义server: 对于socket-based servers: -- address family: ...
- EasyNVR RTSP摄像机HLS直播服务器中使用Onvif协议获取设备快照
我们知道EasyNVR中可以获取快照信息,之前的文章也说明了EasyNVR是如何进行快照抓取的 这里我们使用另一种方法进行快照的抓取 流程 获取设备能力Capabilities 获取设备的能力,并且可 ...