题目链接:

C. Primes or Palindromes?

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!

Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.

Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.

One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes no larger than nrub(n) — the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.

He asked you to solve the following problem: for a given value of the coefficient A find the maximum n, such that π(n) ≤ A·rub(n).

Input

The input consists of two positive integers pq, the numerator and denominator of the fraction that is the value of A ().

Output

If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).

Examples
input
1 1
output
40
input
1 42
output
1
input
6 4
output
172

题意:

问满足pi[n]/rub[n]<=p/q的最大的n是多少;

思路:

pi[i]和rub[i]都随着i的增大而增大,且pi[i]/rub[i]的值也随着增大,(小于10的数特殊);p/q给有范围,可以算一下大约1200000时pi[i]/rub[i]已经大约42了;所以暴力找到那个最大的n;

AC代码:
/*2014300227    569C - 28    GNU C++11    Accepted    61 ms    14092 KB*/
#include <bits/stdc++.h>
using namespace std;
const int N=12e5+;
typedef long long ll;
const double PI=acos(-1.0);
int p,q,pi[N],vis[N],rub[N];
void get_pi()//素数筛+dp得到pi[i]
{
memset(pi,,sizeof(pi));
pi[]=;
for(int i=;i<N;i++)
{
if(!pi[i])
{
for(int j=;j*i<N;j++)
{
pi[i*j]=;
}
pi[i]=pi[i-]+;
}
else pi[i]=pi[i-];
}
}
int is_pal(int x)//判断一个数是不是回文数;
{
int s=,y=x;
while(y)
{
s*=;
s+=y%;
y/=;
}
if(s==x)return ;
return ;
}
void get_rub()
{
rub[]=;
for(int i=;i<N;i++)
{
if(is_pal(i))rub[i]=rub[i-]+;
else rub[i]=rub[i-];
}
}
int check(int x)
{
if(pi[x]*q<=p*rub[x])return ;
return ; }
int get_ans()
{
int ans=;
for(int i=;i<N;i++)
{
if(check(i))ans=i;
}
if(ans==)printf("Palindromic tree is better than splay tree\n");
else printf("%d\n",ans);
}
int main()
{
get_pi();
get_rub();
//cout<<pi[1200000]*1.0/(rub[1200000]*1.0);
scanf("%d%d",&p,&q);
get_ans(); return ;
}

codeforces 569C C. Primes or Palindromes?(素数筛+dp)的更多相关文章

  1. 【34.88%】【codeforces 569C】Primes or Palindromes?

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  2. codeforces 414A A. Mashmokh and Numbers(素数筛)

    题目链接: A. Mashmokh and Numbers time limit per test 1 second memory limit per test 256 megabytes input ...

  3. Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力

    题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...

  4. Codeforces Round #257 (Div. 1) C. Jzzhu and Apples (素数筛)

    题目链接:http://codeforces.com/problemset/problem/449/C 给你n个数,从1到n.然后从这些数中挑选出不互质的数对最多有多少对. 先是素数筛,显然2的倍数的 ...

  5. Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力

    A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...

  6. Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力

    C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

  7. Codeforces Round #511 (Div. 2)-C - Enlarge GCD (素数筛)

    传送门:http://codeforces.com/contest/1047/problem/C 题意: 给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值. 思路: 自己一 ...

  8. codeforces 822 D. My pretty girl Noora(dp+素数筛)

    题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...

  9. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

随机推荐

  1. Oracle 中session和processes的初始设置

    http://blog.163.com/succu/blog/static/193917174201252911727149/ 1.sessions   在初始化参数所设定的限制中,最为人所知的估计就 ...

  2. linux支持的machine-types

    在内核文件中arch/arm/tools/mach-types定义目前内核支持的板卡.芯片等: ##machine_is_xxx  CONFIG_xxxx  MACH_TYPE_xxx  number ...

  3. Nginx与Apache的Rewrite规则的区别

    一.Nginx Rewrite规则相关指令 Nginx Rewrite规则相关指令有if.rewrite.set.return.break等,其中rewrite是最关键的指令.一个简单的Nginx R ...

  4. J2EE——开发环境搭建

    WEB环境搭建 1.J2EE开发环境搭建(1)——安装JDK.Tomcat.Eclipse 2.JAVA运行环境和J2EE运行环境的搭建 3.jsp开发所需要的eclipse插件(lomboz.tom ...

  5. Socket的UDP协议在erlang中的实现

    现在我们看看UDP协议(User Datagram Protocol,用户数据报协议).使用UDP,互联网上的机器之间可以互相发送小段的数据,叫做数据报.UDP数据报是不可靠的,这意味着如果客户端发送 ...

  6. linux下压缩成zip文件解压zip文件

    linux  zip命令的基本用法是: zip [参数] [打包后的文件名] [打包的目录路径] linux  zip命令参数列表: -a     将文件转成ASCII模式 -F     尝试修复损坏 ...

  7. sqlite3常用操作命令 和mysql的区别及优缺点

    SQLite 的数据库权限只依赖于文件系统,没有用户帐户的概念. sqlite3 testdb.db .databases 命令查看数据库列表 create table tbl(name char(1 ...

  8. 【Caffe】源码解析----caffe.proto (转载)

    分析caffe源码,看首先看caffe.proto,是明智的选择.好吧,我不是创造者,只是搬运工. 原文地址:http://blog.csdn.net/qq_16055159/article/deta ...

  9. EF6&EFCore 注册/使用实体类的正确姿势

    首先回顾下EF中常规使用流程 1.新建实体类以及实体配置(data annotation或fluent api) [Table("Users")] public class Use ...

  10. 【Atheros】如何在驱动中禁用ACK

    上一篇文章讲了如何禁用载波侦听(CSMA)和退避(BACKOFF)的方法,这一篇介绍如何禁用ACK. 禁用ACK主要分为三部分: 1. 在发送端设置不等待ACK回来就继续发送: 2. 在接收端设置收到 ...