题目链接:

C. Primes or Palindromes?

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!

Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.

Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.

One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes no larger than nrub(n) — the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.

He asked you to solve the following problem: for a given value of the coefficient A find the maximum n, such that π(n) ≤ A·rub(n).

Input

The input consists of two positive integers pq, the numerator and denominator of the fraction that is the value of A ().

Output

If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).

Examples
input
1 1
output
40
input
1 42
output
1
input
6 4
output
172

题意:

问满足pi[n]/rub[n]<=p/q的最大的n是多少;

思路:

pi[i]和rub[i]都随着i的增大而增大,且pi[i]/rub[i]的值也随着增大,(小于10的数特殊);p/q给有范围,可以算一下大约1200000时pi[i]/rub[i]已经大约42了;所以暴力找到那个最大的n;

AC代码:
/*2014300227    569C - 28    GNU C++11    Accepted    61 ms    14092 KB*/
#include <bits/stdc++.h>
using namespace std;
const int N=12e5+;
typedef long long ll;
const double PI=acos(-1.0);
int p,q,pi[N],vis[N],rub[N];
void get_pi()//素数筛+dp得到pi[i]
{
memset(pi,,sizeof(pi));
pi[]=;
for(int i=;i<N;i++)
{
if(!pi[i])
{
for(int j=;j*i<N;j++)
{
pi[i*j]=;
}
pi[i]=pi[i-]+;
}
else pi[i]=pi[i-];
}
}
int is_pal(int x)//判断一个数是不是回文数;
{
int s=,y=x;
while(y)
{
s*=;
s+=y%;
y/=;
}
if(s==x)return ;
return ;
}
void get_rub()
{
rub[]=;
for(int i=;i<N;i++)
{
if(is_pal(i))rub[i]=rub[i-]+;
else rub[i]=rub[i-];
}
}
int check(int x)
{
if(pi[x]*q<=p*rub[x])return ;
return ; }
int get_ans()
{
int ans=;
for(int i=;i<N;i++)
{
if(check(i))ans=i;
}
if(ans==)printf("Palindromic tree is better than splay tree\n");
else printf("%d\n",ans);
}
int main()
{
get_pi();
get_rub();
//cout<<pi[1200000]*1.0/(rub[1200000]*1.0);
scanf("%d%d",&p,&q);
get_ans(); return ;
}

codeforces 569C C. Primes or Palindromes?(素数筛+dp)的更多相关文章

  1. 【34.88%】【codeforces 569C】Primes or Palindromes?

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  2. codeforces 414A A. Mashmokh and Numbers(素数筛)

    题目链接: A. Mashmokh and Numbers time limit per test 1 second memory limit per test 256 megabytes input ...

  3. Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力

    题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...

  4. Codeforces Round #257 (Div. 1) C. Jzzhu and Apples (素数筛)

    题目链接:http://codeforces.com/problemset/problem/449/C 给你n个数,从1到n.然后从这些数中挑选出不互质的数对最多有多少对. 先是素数筛,显然2的倍数的 ...

  5. Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力

    A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...

  6. Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力

    C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

  7. Codeforces Round #511 (Div. 2)-C - Enlarge GCD (素数筛)

    传送门:http://codeforces.com/contest/1047/problem/C 题意: 给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值. 思路: 自己一 ...

  8. codeforces 822 D. My pretty girl Noora(dp+素数筛)

    题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...

  9. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

随机推荐

  1. js:argument

    引用:http://www.cnblogs.com/lwbqqyumidi/archive/2012/12/03/2799833.html    http://www.cnblogs.com/Fskj ...

  2. leetCode 84.Largest Rectangle in Histogram (最大矩形直方图) 解题思路和方法

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  3. PowerBuilder -- 数字金额大写

    //==================================================================== // 事件: .pub_fc_change_number( ...

  4. PHP基础函数手记

    PHP常用函数总结(180多个):http://www.jb51.net/article/101179.htm PHP常用函数归类总结[大全]:http://blog.csdn.net/ty_hf/a ...

  5. 【BZOJ】1003 Cards

    [解析]Burnside引理+背包dp+乘法逆元 [Analysis] 这道题卡了好久,就是没想懂置换跟着色是不一样的. 依据burnside引理.在一个置换群作用下不等价类的个数为每一个置换作用下不 ...

  6. python 基础 7.1 datetime 获得时间

    一 datatime 的使用   object         timedeta         tzinfo         time         data                dat ...

  7. python 基础 2.8 python练习题

    python 练习题:   #/usr/bin/python #coding=utf-8 #@Time   :2017/10/26 9:38 #@Auther :liuzhenchuan #@File ...

  8. Tomcat学习笔记【2】--- Tomcat安装、环境变量配置、启动和关闭

    本文主要讲Tomcat的安装和配置. 一 Tomcat安装 1.1 下载 下载地址:http://tomcat.apache.org/ 1.2 安装 Tomcat是不需要安装的,解压压缩包即可. 在安 ...

  9. python自动化运维六:paramiko

    paramiko是基于python实现的SSH2远程安全连接,支持认证以及密钥方式,可以实现远程命令执行,文件传输,中间SSH代理等功能.也就是采用SSH的方式进行远程访问.SSH登陆的方式可以参考之 ...

  10. while 循环中的break continue pass 的用法

    while break:跳出最近的循环 continue:跳到最近所在循环的开头处 pass:什么也不做,只是空占位语句,它本身与循环没什么关系,但属于简单的单个单词语句的范畴: pass 语句是无运 ...