洛谷 P4549 【模板】裴蜀定理
https://www.luogu.org/problemnew/show/P4549
(1)证明方程ax+by=gcd(a,b)(a,b为常数;a>0,b>0;a,b,x,y为整数)有解:
参考https://blog.csdn.net/discreeter/article/details/69833579
([x]表示x向下取整)
令d=gcd(a,b)
可得d|a,d|b,d|(ax+by)
设s是(ax+by)得到的数中最小正元素
设s=a*x1+b*y1
设q=[a/s]
则r=a%s=a-[a/s]*s=a-q*(a*x1+b*y1)=a*(1-q*x1)+b*(-q*y1)
显然0<=r<s,因此显然r=0
因此s|a
同理s|b
所以s|d
而由于d|(a*x1+b*y1)
所以d|s
所以d=s
(由(1)容易推断,当gcd(a,b)|c时,ax+by=c有解)
(2)证明ax+by=c(条件同上)有解,则gcd(a,b)|c
不证了。。看起来就是对的
(3)由(1),(2)可得,方程ax+by=c(a,b,c为常数;a>0,b>0;a,b,c,x,y为整数)有解,当且仅当gcd(a,b)|c
可以发现以上证明对于任意个数的数也成立(结论中,gcd(a,b)|c中gcd(a,b)变成gcd(a,b,c,d,..))
所以此题只要输出n个数的gcd即可
from math import *
n=int(input())
data=input().split(' ')
an=0
for i in range(n):
an=gcd(an,int(data[i]))
print(an)
洛谷 P4549 【模板】裴蜀定理的更多相关文章
- [洛谷P4549] [模板] 裴蜀定理
18.10.03模拟赛T1. 出题人xcj(Mr.Handsome)十分良心,给了一道送分题...... 互测题好久没有出现送分题了.xcj真棒. 题目传送门 幸亏之前看过,否则真的是送分题都拿不到. ...
- Luogu P4549 裴蜀定理 / Min
思路 题目已经给出了正解.我们只需要将裴蜀定理推广到若干数的线性组合就可以做这道题了 要注意的是需要在输入的时候取一个绝对值.因为可能会有负数存在.我之前也写过裴蜀定理的证明,要看的话点这里 吐槽 第 ...
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 【Wannafly挑战赛22A计数器】【裴蜀定理】
https://www.nowcoder.com/acm/contest/160/A 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数 ...
随机推荐
- [haoi2014]贴海报
Bytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论.为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙.张贴规则如下:1.electoral墙是 ...
- margin在块元素、内联元素中的区别 padding
(1)margin在块元素.内联元素中的区别 HTML(这里说的是html标准,而不是xhtml)里分两种基本元素,即block和inline.顾名思义,block元素就是以”块”表现的元素(bloc ...
- 人生苦短之Python文件的IO操作
在Python中也有涉及到文件的相关操作,从最简单的文件读取说起 文件读取 file = open('/Users/macbookpro/Desktop/使用教程.txt', 'r', encodin ...
- fatal error C1902: 程序数据库管理器不匹配;请检查安装解决
http://blog.sina.com.cn/s/blog_9f4bc8e301015uhz.html 1.错误提示:VS2008编译错误fatal error C1902: 程序数据库管理器不匹配 ...
- html5--3.6 input元素(5)
html5--3.6 input元素(5) 学习要点 input元素及其属性 input元素 用来设置表单中的内容项,比如输入内容的文本框,按钮等 不仅可以布置在表单中,也可以在表单之外的元素使用 i ...
- javaScrpit中NaN的秘密
NaN,不是一个数字,是一种特殊的值来代表不可表示的值,使用typeof或其他任何与之比较的处理方式,‘NaN’则会引起一些混乱, 一些操作会导致NaN值的产生.这里有些例子: Math.sqrt(- ...
- Gym101161:ACM Tax (主席树)(占位)
题意:给定一个带权树,Q次询问,每次回答某简单路径上的权值中位数. 思路:记录根到节点的主席树,主席树可以找到路径的第K大权值.(记住,这里是可以不用二分的,不要想多了.) 奇数条边直接找中位数,偶数 ...
- Piggy-Bank(复习完全背包)
传送门 题目大意: 有一个存钱的储存罐,给你它存满钱之前和之后的重量,和几类硬币的面值和重量. 求装满储钱罐时最小能得到多少钱. 题解:完全背包变形. 因为要求最小 一开始赋值大数. code: #i ...
- C++之构造函数、参数列表、析构函数
参考自:https://blog.csdn.net/sunSHINEEzy/article/details/78122485 构造函数之默认构造函数(调用的构造函数不用传递参数) 两种实例化方式都是默 ...
- windbg调试堆破坏
堆破坏 所谓的堆破坏,是说没控制好自己的指针,把不属于你分配的那块内存给写覆盖了.这块内存可能是你程序的数据,也可能是堆的管理结构.那么这个会导致怎样的后果呢?可能的情况我们来yy下 把程序里的计算结 ...