无趣的小x在玩一个很无趣的数字游戏。他要在n个数字中找他喜欢友好数对。
他对友好数对的定义是:如果有两个数中包含某一个以上相同的数位(单个数字),这两个数就是友好数对。
比如:123和345 就是友好数对,因为都包含数位3,显然123和234也是由号数对。而12和34则不是友好数对,因为它们没有相同的数位。

刚拿到题没怎么读懂,因为我直观的想法是存一下扫一遍就行了,后来一想,得用容斥;又犯蠢了;

其实这道题的容斥比较基本,看代码吧;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<ctime>
#include<vector>
#include<algorithm>
#include<queue>
#include<map>
using namespace std;
#define LL long long
int n;
LL x=;
int b[<<],c[<<];
void init(){
cin>>n;
int y,p;
for(int i=;i<=n;i++){
scanf("%I64d",&x);
p=;
while(x!=){
y=x%;
x/=;
p=p|(<<y);
}
b[p]++;
}
}
LL col(LL x){return x*(x-)/;}
void work(){
for(int i=;i<<<;i++)
for(int j=;j<<<;j++)
if((i|j)==i)c[j]+=b[i];
int sum=;
LL ans=;
for(int i=;i<<<;i++){
sum=;
for(int j=;j<;j++){
if(i&(<<j))sum++;
}
if(sum%)ans+=col(c[i]);
else ans-=col(c[i]);
}
cout<<ans<<endl;
}
int main(){
//freopen("1.in","r",stdin);
//freopen("1.out","w",stdout);
init();
work();
}

[coci2011]友好数对 容斥的更多相关文章

  1. JZYZOJ1376 [coci2011]友好数对 容斥定理 状态压缩

    http://172.20.6.3/Problem_Show.asp?id=1376 题意:找给出的数中含有相同数字的数对的对数. mmp数论题竟然卡快读,莫名拉低通过率什么的太过分了. 刚开始想到了 ...

  2. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形 容斥

    1914: [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 272  Sol ...

  3. 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]

    传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...

  4. [BZOJ4455][ZJOI2016]数星星(容斥DP)

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 707  Solved: 419[Submit][Status] ...

  5. 【BZOJ3930】[CQOI2015] 选数(容斥)

    点此看题面 大致题意: 让你求出在区间\([L,H]\)间选择\(n\)个数时,有多少种方案使其\(gcd\)为\(K\). 容斥 原以为是一道可怕的莫比乌斯反演题. 但是,数据范围中有这样一句话:\ ...

  6. 洛谷P3172 [CQOI2015]选数(容斥)

    传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...

  7. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  8. COCI2011:友好数对

    校内OJ传送门 一般容斥,具体思想参考代码实现,刚开始是在读入时处理所有数的二进制子集,没看$N$的范围以为复杂度不会爆炸.. 然后复杂度就爆炸了. 小优化: 每次整个载入二进制,计数.这个结束后枚举 ...

  9. [bzoj3505 Cqoi2014] 数三角形 (容斥+数学)

    传送门 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正 ...

随机推荐

  1. css-通过css让块显示或隐藏

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. 遇到的cannot find module 'xxx' 问题

    昨天配置新项目的环境,明明都npm inatsll都安装了,再次运行的时候一直报错,缺少模块.我以为就一个没安装上,就手动npm install -g 'xxx' :结果一个装好了,又继续蹦出cann ...

  3. 第5章 Spring Boot 功能

    Spring Boot 功能 本节将会介绍Spring Boot的一些细节. 在这里,您可以了解您将要使用和自定义的主要功能. 如果还没有准备好,您可能需要阅读第二部分“入门指南”和第三部分“使用 S ...

  4. Uncaught TypeError: window.showModalDialog is not a function

    if(window.showModalDialog == undefined){ window.showModalDialog = function(url,mixedVar,features){ w ...

  5. Java集合——Collections工具类

    Java集合——Collections工具类 摘要:本文主要学习了Collections工具类的常用方法. 概述 Collections工具类主要用来操作集合类,比如List和Set. 常用操作 排序 ...

  6. Eval is evil ('Eval是魔鬼') --- eval()函数

    Eval is evil ('Eval是魔鬼') eval() 函数可计算某个字符串,并执行其中的的 JavaScript 代码.语法:eval(string): eval的使用场合是什么呢?有时候我 ...

  7. ios- nil NULL 和 NSNull

    因为objective-c的集合对象,比如nsarray, nsdictionary, nsset等,都有可能包含nsnull对象,所以,如果以下代码中的item为nsnull,则会引起程序崩溃. N ...

  8. django_session

    基于cookie做用户验证时:敏感信息不适合放在cookie中 session依赖cookie session原理 cookie是保存在用户浏览器端的键值对 session是保存在服务器端的键值对 s ...

  9. python_获得列表中重复的项的索引

    a = ['b','a', 'b', 'c', 'a', 'c','d'] b=[] f=[] for i in a: c=[] for item in enumerate(a): if item[1 ...

  10. 如何使用电骡eMule上传资源

    1 在电脑中创建一个文件夹专门为上传资源使用 在里面放入任意文件并右击显示ED2K链接   链接效果如下 2 登陆verycd网站,并点击上传资源 复制ED2K地址并选择分类