题意:

  给出一个范围[m,n],按照二进制表示中的1的个数从小到大排序,若1的个数相同,则按照十进制大小排序。求排序后的第k个数。注意:m*n>=0。

思路:

  也是看论文的。一开始也能想到是这种解法,枚举0~31个1,逐步缩小第k个数的范围(其实就是找到第k个数应该有几个1),然后二分答案,直到找到第k个数。

  我只是在找第k个数时不是二分答案,而是想直接从最高位往低位走,判断左子树中满足条件的数的数量,然后控制往下一位应该是0还是1(即往树的哪一个孩子方向走,直到根)。其实也是二分思想。

  这题明显只有两个范围:[-INF,0]或者[0,INF],要特别注意n=0或者m=0的情况,有可能第k个数就是0,否则,是不是0就没有什么影响了。

 //#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x7f3f3f3f
#define LL long long
using namespace std;
const double PI = acos(-1.0);
const int N=; //注意大小 int f[N][N], bit[N], m, n, k;;
void pre_cal() //预处理组合数
{
f[][]=;
for(int i=; i<N; i++) //位数
{
f[i][]=f[i][i]=;
for(int j=; j<i; j++) //多少个1
{
f[i][j]=f[i-][j]+f[i-][j-];
}
}
} int cal(int n,int k,int b)
{
memset(bit, , sizeof(bit));
int len=, cnt=, ans=;
while(n) //转成b进制
{
bit[++len]=n%b;
n/=b;
}
for(int i=len; i>; i--)
{
if( bit[i]== )
{
ans+=f[i-][k-cnt]; //统计左边的
if(++cnt>k) break; //已超
}
}
if(cnt==k) ans++;
return ans;
} int get_ans(int m,int n,int k)
{
int i, num;
for(i=; i<=; i++) //枚举位数
{
num=cal(n,i,)-cal(m-,i,);
if(k-num<=) break;
else k-=num;
}
int L=m,R=n;
while( L<R ) //二分答案
{
int mid=R-(R-L+)/;
num=cal(mid,i,)-cal(m-,i,);
if( num<k ) L=mid+;
else R=mid; //如果等于,也是继续缩小范围的
}
return R;
} int main()
{
//freopen("input.txt","r",stdin);
pre_cal();
int t;cin>>t;
while(t--)
{
scanf("%d%d%d",&m,&n,&k);
if(m<)
{
m^=(<<); //改为正
if(n==) //上界为0
{
n--;
n^=(<<);
if(get_ans(m,n,k-)==n) printf("0\n");
else cout<<(get_ans(m,n,k)^(<<))<<endl;
}
else
{
n^=(<<);
cout<<(get_ans(m,n,k)^(<<))<<endl; //恢复负值
}
}
else
{
if(m==&&k==) {printf("0\n");continue;}
else if(m==) m++,k--;
cout<<get_ans(m,n,k)<<endl;
}
}
return ;
}

AC代码

SPOJ SORTBIT Sorted bit squence (数位DP,入门)的更多相关文章

  1. spoj SORTBIT - Sorted bit squence

    Let's consider the 32 bit representation of all integers i from m up to n inclusive (m ≤ i ≤ n; m × ...

  2. 【SPOJ 1182】 SORTBIT - Sorted bit squence (数位DP)

    SORTBIT - Sorted bit squence no tags Let's consider the 32 bit representation of all integers i from ...

  3. xbz分组题B 吉利数字 数位dp入门

    B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...

  4. 数位dp入门 hdu2089 不要62

    数位dp入门 hdu2089 不要62 题意: 给定一个区间[n,m] (0< n ≤ m<1000000),找出不含4和'62'的数的个数 (ps:开始以为直接暴力可以..貌似可以,但是 ...

  5. hdu3555 Bomb 数位DP入门

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555 简单的数位DP入门题目 思路和hdu2089基本一样 直接贴代码了,代码里有详细的注释 代码: ...

  6. HDU 2089 不要62【数位DP入门题】

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. HDU 2089 不要62(数位dp入门)

    题意:统计区间 [a,b] 中不含 4 和 62 的数字有多少个. 题解:这是数位DP的入门题了,首先要理解数DP的原理,DP[i][j]:代表第i位的第j值,举个栗子:如4715   数位数是从右向 ...

  8. HDU 2089 - 不要62 - [数位DP][入门题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 Time Limit: 1000/1000 MS (Java/Others) Memory Li ...

  9. SPOJ BALNUM Balanced Numbers (数位dp)

    题目:http://www.spoj.com/problems/BALNUM/en/ 题意:找出区间[A, B]内所有奇数字出现次数为偶数,偶数字出现次数为计数的数的个数. 分析: 明显的数位dp题, ...

随机推荐

  1. Will&nbsp;you&nbsp;still&nbsp;need&nbsp;me?

    ON FRIDAY, the National Bureau of Statistics announced that China's working-age population shrank la ...

  2. 条款32:确定你的public继承塑模出is-a的关系

    Make sure public inheritance models "is –a " 如果令clsss D 以public的形式继承class B,你便是告诉编译器说,每一个类 ...

  3. (三)整合SSH测试项目

    整合struts 和 spring 预期:如果可以在action中能够正确调用service里面的方法执行并返回到一个页面中:那么我们认定struts和spring的整合是成功的. 编写JUnit测试 ...

  4. java面试一定会遇到的56个面试题

    1.问题:如果main方法被声明为private会怎样? 答案:能正常编译,但运行的时候会提示”main方法不是public的”. 2.问题:Java里的传引用和传值的区别是什么? 答案:传引用是指传 ...

  5. Celery异步任务重复执行(Redis as broker)

    之前讲到利用celery异步处理一些耗时或者耗资源的任务,但是近来分析数据的时候发现一个奇怪的现象,即是某些数据重复了,自然想到是异步任务重复执行了. 查阅之后发现,到如果一个任务太耗时,任务完成时间 ...

  6. 反向传播(BP)算法理解以及Python实现

    全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^ ...

  7. 解决eclipse js文件报错(转)

    在我们将项目导入Eclipse后,配置好各种编译条件.加载好jar包.配置好tomcat后发现项目还是报错,(前提是项目本身并没有错误,而是我们在初次导入到Eclipse中的时候报错),那是什么原因引 ...

  8. ue4 motage

    Montage是什么 一个(可以自由拼接动画的)动画剪辑,通过slot,在任意时候由玩家主动向动画系统push自己制作的动画剪辑 Montage用途 上图是一个近身攻击动画,含有 3 个片段 [开始. ...

  9. Unity脚本引用原理,修复Unity脚本引用丢失,源码脚本与dll中的脚本引用互换 .

    http://blog.csdn.net/gz_huangzl/article/details/52486509 前言 在我们开发游戏的过程中,经常会碰到脚本引用丢失的情况,但是怎么把它们修复到我们的 ...

  10. ugui获取text宽

    http://www.xuanyusong.com/archives/3587 void Start () { Font font = Resources.Load<Font>(" ...