HDU 5451 Best Solver(fibonacci)
感谢这道题让我复习了一遍线代,还学习了一些奇奇怪怪的数论。
令
二项展开以后根号部分抵消了
显然有
所以要求的答案是
如果n比较小的话,可以直接对二项式快速幂,但是这题n很大
这个问题和矩阵的特征值以及数列递推有奇怪的联系
广义的fibonacci数列的形式如下
写成矩阵形式就是
有一个奇怪的结论:
其中lambda1,lambda2是递推矩阵的特征值,此处只讨论lambda1!=lambda2的情况。
这个奇怪的结论其实很容易证明,
根据以上结果,利用矩阵的数乘和分配律然后归纳就可以完整得到结论
令lambda1=p,lambda2=q,可以求出a和b,答案就在递推的第n项
然后通过找循环节减小n
m是素数时一般的做法:http://blog.csdn.net/ACdreamers/article/details/25616461
费马小定理和欧拉准则不明觉厉。。。
此题所有的m循环节都小,直接暴力,然后记忆化
lambda1!=lambda2,所以A一定可以对角化,而A^n就可以表示为
对应特征值
并且有
所以对A矩阵快速幂以后算出迹减1就是答案
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; struct Matrix
{
int e[][];
int* operator[](int p){
return e[p];
}
}; ll Mod;
Matrix operator *(Matrix &A, Matrix &B)
{
Matrix R;
for(int i = ; i < ; i++){
for(int j = ; j < ; j++){
R[i][j] = ;
for(int k = ; k < ; k++){
R[i][j] = (R[i][j] + (ll)A[i][k]*B[k][j]+Mod)%Mod;
}
}
}
return R;
} Matrix Matrix_pow(Matrix A,ll p)
{
Matrix R;
for(int i = ; i < ; i++){
for(int j = ; j < ; j++){
R[i][j] = i==j?:;
}
}
while(p){
if(p&) R = R*A;
A = A*A;
p>>=;
}
return R;
} ll qPow(ll a,ll p,ll mod)
{
ll ret = ;
while(p){
if(p&) ret = (ret*a)%mod;
a = (a*a)%mod;
p >>= ;
}
return ret;
} const int maxm = +;
int r[maxm],f[maxm]; int main()
{
//freopen("in.txt","r",stdin);
int T, kas = ; scanf("%d",&T);
while(T--){
ll x; scanf("%I64d%I64d",&x,&Mod);
if(!r[Mod]){
f[] = ; f[] = ;
for(int i = ; ;i++){
f[i] = (10LL*f[i-]-f[i-]+Mod)%Mod;
if(f[i] == f[] && f[i-] == f[]){ r[Mod] = i-; break; }
}
}
Matrix A;
A[][] = %Mod; A[][] = Mod-; A[][] = ; A[][] = ;
auto ans = Matrix_pow(A,(qPow(,x,r[Mod])+)%r[Mod]);
printf("Case #%d: %d\n",++kas,(ans[][]+ans[][]+Mod-)%Mod);
}
return ;
}
HDU 5451 Best Solver(fibonacci)的更多相关文章
- HDU - 5451 Best Solver(循环节+矩阵快速幂)
Best Solver The so-called best problem solver can easily solve this problem, with his/her childhood ...
- HDU 5938 Four Operations(四则运算)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- HDU 5775 Bubble Sort(冒泡排序)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- HDU 1711 Number Sequence(数列)
HDU 1711 Number Sequence(数列) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- HDU 1005 Number Sequence(数列)
HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- 第2章 数字之魅——斐波那契(Fibonacci)数列
斐波那契(Fibonacci)数列 问题描述 递归算法: package chapter2shuzizhimei.fibonacci; /** * Fibonacci数列递归求解 * @author ...
- 2.裴波那契(Fibonacci)数列
裴波那契(Fibonacci)数列 f(n)= ⎧⎩⎨0,1,f(n−1)+f(n−2),n =0n =1n>1 求裴波那契数列的第n项.(题目来自剑指offer) 1.递归解法,效率很低的解法 ...
- python的生成器(斐波拉契数列(Fibonacci))
代码: 函数版本: #斐波拉契数列(Fibonacci) def fib(max): n=0 a,b=0,1 while n < max: a,b = b,a+b n = n+1 return ...
- HDU 1176 免费馅饼 (动态规划)
HDU 1176 免费馅饼 (动态规划) Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼.说来gameboy的人品实在是太好了,这馅饼 ...
随机推荐
- 23.Consent 代码重构
新建Services文件,并新建类ConsentService类把,ConsetController里面不是Action的方法都放在这个ConsentService类里面 先把构造函数完善 把这些私有 ...
- 2. nmap扫描神器总结
-----------------nmap(选项)(参数)------------------O:激活操作探测: -P0:值进行扫描,不ping主机: -PT:是同TCP的ping: -sV:探测服务 ...
- DropDownlist数据SelectedIndexChanged触发问题解决
1.设置DropDownlist的AutoPostBack为True 2.绑定DropDownlist数据时出现了重复项, 在载入数据时保存数据状态应该写在Load事件中的if (!IsPostBac ...
- jquery获取元素对应高度
https://www.cnblogs.com/sntetwt/p/3823592.html 获取点击元素距离页面的高度 $(select).offset().top - $(document).sc ...
- Web项目开发介绍及实战项目介绍
引言 本系列课程我们将学些Golang语言中的Web开发框架Iris的相关知识和用法.通过本系列视频课程,大家能够从零到一经历一个完整项目的开发,并在课程中了解实战项目开发的流程和项目设涉及的各个模块 ...
- 蓝桥杯T32(树的直径)
题目链接:http://lx.lanqiao.cn/problem.page?gpid=T32 题意:中文题诶- 思路:显然给出的地图是一颗树,若能求得树的直径 ans,则答案为:ans*(ans+1 ...
- [NOIP2014]子矩阵
1812. [NOIP2014]子矩阵 http://www.cogs.pro/cogs/problem/problem.php?pid=1812 ★★★ 输入文件:submatrix.in ...
- 一文搞定 Redis 复制(全会的举个手看看)
阅读本文大概需要 5 分钟. 本文大纲 复制过程 数据间的同步 全量复制 部分复制 心跳 异步复制 总结 一.复制过程 Step 1:从节点执行 slaveof 命令. Step 2:从节点只是保存了 ...
- 洛谷P1002 过河卒
关于蒟蒻的我,刚刚接触DP.... 那么就来做一道简单DP吧.... 首先先看题: 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一 ...
- P2184 贪婪大陆 树状数组
树状数组帅炸了....又被一道水题轻虐,又被学长指出了一个错误....我太菜了QAQ 开两个树状数组,一个记录左端点,一个记录右端点: 共有cnt(总数) - (<l的右端点数目) - (> ...