题目链接:BZOJ - 3669

题目分析

如果确定了带 x 只精灵A,那么我们就是要找一条 1 到 n 的路径,满足只经过 Ai <= x 的边,而且要使经过的边中最大的 Bi 尽量小。

其实就是一个按照 Bi 建立的 MST 上 1 到 n 的路径。只能使用 Ai <= x 的边。

那么,如果我们从小到大枚举 x ,这样可以使用的边就不断增加,就是在加边的同时维护 MST ,用 LCT 来做就可以了。

如果新加入一条边 (u, v, w) ,并且原 MST 上 u 到 v 的路径中边权最大的边的边权大于 w ,那么就删掉那条边权最大的边,然后把这条新加入的边连到 MST 中。

备注:在 Cut 不够优的边时,我之前将代码写出了非常可怕的 BUG ,但是由于神奇的写法的巧合,这个 BUG 并没有造成后果,我用错误的代码 AC 了两道题..

现在下方的代码是正确的了。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; inline void Read(int &Num)
{
char c = getchar();
while (c < '0' || c > '9') c = getchar();
Num = c - '0'; c = getchar();
while (c >= '0' && c <= '9')
{
Num = Num * 10 + c - '0';
c = getchar();
}
} inline int gmax(int a, int b) {return a > b ? a : b;}
inline int gmin(int a, int b) {return a < b ? a : b;} const int MaxN = 50000 + 5, MaxM = 100000 + 5, MaxT = 150000 + 5, INF = 999999999; int n, m, Ans;
int Father[MaxT], Son[MaxT][2], V[MaxT], T[MaxT]; bool isRoot[MaxT], Rev[MaxT]; struct ES
{
int u, v, p, q;
} E[MaxM]; inline bool Cmp(ES e1, ES e2)
{
return e1.p < e2.p;
} /**************************** LCT Start *******************************/ inline int Tmax(int a, int b) {return V[a] > V[b] ? a : b;} inline void Update(int x)
{
T[x] = Tmax(x, Tmax(T[Son[x][0]], T[Son[x][1]]));
} inline void Reverse(int x)
{
Rev[x] = !Rev[x];
swap(Son[x][0], Son[x][1]);
} inline void PushDown(int x)
{
if (!Rev[x]) return;
Rev[x] = false;
if (Son[x][0]) Reverse(Son[x][0]);
if (Son[x][1]) Reverse(Son[x][1]);
} inline int GetDir(int x)
{
if (x == Son[Father[x]][0]) return 0;
else return 1;
} void Rotate(int x)
{
int y = Father[x], f;
PushDown(y); PushDown(x);
f = GetDir(x) ^ 1;
if (isRoot[y])
{
isRoot[y] = false;
isRoot[x] = true;
}
else
{
if (y == Son[Father[y]][0]) Son[Father[y]][0] = x;
else Son[Father[y]][1] = x;
}
Father[x] = Father[y];
Son[y][f ^ 1] = Son[x][f];
if (Son[x][f]) Father[Son[x][f]] = y;
Son[x][f] = y;
Father[y] = x;
Update(y); Update(x);
} void Splay(int x)
{
int y;
while (!isRoot[x])
{
y = Father[x];
if (isRoot[y])
{
Rotate(x);
break;
}
if (GetDir(y) == GetDir(x)) Rotate(y);
else Rotate(x);
Rotate(x);
}
} int Access(int x)
{
int y = 0;
while (x != 0)
{
Splay(x);
PushDown(x);
if (Son[x][1]) isRoot[Son[x][1]] = true;
Son[x][1] = y;
if (y) isRoot[y] = false;
Update(x);
y = x;
x = Father[x];
}
return y;
} inline void Make_Root(int x)
{
int t = Access(x);
Reverse(t);
} inline void Link(int x, int y)
{
Make_Root(x);
Splay(x);
Father[x] = y;
} inline void Cut(int x, int y)
{
Make_Root(x);
Access(y);
Splay(y);
PushDown(y);
isRoot[Son[y][0]] = true;
Father[Son[y][0]] = 0;
Son[y][0] = 0;
Update(y);
} inline int Find_Root(int x)
{
int t = Access(x);
while (Son[t][0] != 0) t = Son[t][0];
return t;
} /**************************** LCT End *******************************/ int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++i)
{
Read(E[i].u); Read(E[i].v);
Read(E[i].p); Read(E[i].q);
}
sort(E + 1, E + m + 1, Cmp); // by ES.p
for (int i = 1; i <= m; ++i) V[n + i] = E[i].q;
for (int i = 1; i <= n + m; ++i)
{
isRoot[i] = true;
Father[i] = 0;
T[i] = i;
}
Ans = INF;
int t, CutE;
for (int i = 1; i <= m; ++i)
{
if (Find_Root(E[i].u) != Find_Root(E[i].v))
{
Link(E[i].u, n + i); Link(E[i].v, n + i);
}
else
{
Make_Root(E[i].u);
t = Access(E[i].v);
if (V[T[t]] > E[i].q)
{
CutE = T[t];
Cut(CutE, E[CutE - n].u); Cut(CutE, E[CutE - n].v);
Link(E[i].u, n + i); Link(E[i].v, n + i);
}
}
if (Find_Root(1) == Find_Root(n))
{
Make_Root(1);
t = Access(n);
Ans = gmin(Ans, E[i].p + V[T[t]]);
}
}
if (Ans == INF) Ans = -1;
printf("%d\n", Ans);
return 0;
}

  

[BZOJ 3669] [Noi2014] 魔法森林 【LCT】的更多相关文章

  1. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  2. bzoj 3669: [Noi2014]魔法森林 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec  ...

  3. bzoj 3669: [Noi2014] 魔法森林 LCT版

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  4. BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  5. BZOJ 3669: [Noi2014]魔法森林(lct+最小生成树)

    传送门 解题思路 \(lct\)维护最小生成树.我们首先按照\(a\)排序,然后每次加入一条边,在图中维护一棵最小生成树.用并查集判断一下\(1\)与\(n\)是否联通,如果联通的话就尝试更新答案. ...

  6. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  7. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  8. bzoj 3669: [Noi2014]魔法森林 -- 动点spfa

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...

  9. bzoj 3669: [Noi2014]魔法森林(并查集+LCT)

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

随机推荐

  1. JavaEE SSH框架整合(三) struts2 异常、http错误状态码处理

    struts2的action可能出现訪问不到,或action报异常等情况,所以须要作一些处理,给用户一个友好的印象. 1. 异常处理  result声明在action中 <action name ...

  2. mybatis0202 一对一查询 resultType实现

    一对一查询 查询订单信息和用户信息 创建po类 基础的单表的 po(数据库类)类:Items.java, Orderdetail.java, Orders.java, User.java 一对一查询映 ...

  3. mybatis09

    1mybatis开发dao的方法 .1SqlSession作用范围 是使用局部变量.成员变量,还是形参? 1.1.1SqlSessionFactoryBuilder SqlSessionFactory ...

  4. LabVIEW设计模式系列——状态机

    标准:1.状态用枚举自定义类型,便于统一管理修改.2.一般地应该有:Initialize,Idle,Stop,Blank状态.3.Initialize进行一些初始化的操作:Idle一种过渡状态,用于和 ...

  5. 如何使用JCA (J2EE 连接器架构)实现企业应用--转载

    JCA (J2EE 连接器架构,Java Connector Architecture)是对J2EE标准集的重要补充.因为它注重的是将Java程序连接到非Java程序和软件包中间件的开发.连接器特指基 ...

  6. Response乱码的解决方法

    protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletExcept ...

  7. 动态jsp页面转PDF输出到页面

    最近工作中遇到不少问题.总结一下.这段代码主要功能是将一个生成JSP页面转发成PDF输出到页面 需要利用ITEXT String html = ServletUtils.forward(request ...

  8. loading图片制作(没有设计师的情况下,前端同学自己制作loading动图)

    svg  css  gif   http://loading.io/

  9. CentOS 6.7平台nginx压力测试(ab/webbench)

    压力测试工具一:webbench 1.安装 wget http://home.tiscali.cz/~cz210552/distfiles/webbench-1.5.tar.gz tar zxvf w ...

  10. MSDN Webcast 系列课程

    云计算(Cloud) 云起龙骧系列课程 网络开发(Web) ASP.NET 4 风云之旅系列课程 ASP.NET 开发实践系列课程 MOSS2007 最佳实战 StepByStep 系列课程 Silv ...