Georgia and Bob
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8656   Accepted: 2751

Description

Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example:


Georgia and Bob move the chessmen in turn. Every time a player will
choose a chessman, and move it to the left without going over any other
chessmen or across the left edge. The player can freely choose number of
steps the chessman moves, with the constraint that the chessman must be
moved at least ONE step and one grid can at most contains ONE single
chessman. The player who cannot make a move loses the game.

Georgia always plays first since "Lady first". Suppose that Georgia
and Bob both do their best in the game, i.e., if one of them knows a way
to win the game, he or she will be able to carry it out.

Given the initial positions of the n chessmen, can you predict who will finally win the game?

Input

The
first line of the input contains a single integer T (1 <= T <=
20), the number of test cases. Then T cases follow. Each test case
contains two lines. The first line consists of one integer N (1 <= N
<= 1000), indicating the number of chessmen. The second line contains
N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are
the initial positions of the n chessmen.

Output

For
each test case, prints a single line, "Georgia will win", if Georgia
will win the game; "Bob will win", if Bob will win the game; otherwise
'Not sure'.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win
Georgia will win

Source

【思路】

阶梯博弈

将棋子之间的间距视作一堆石子,则问题可以转化为一类名为阶梯博弈的东西。

即:

如果对方在奇数位上取硬币,那么我们也类似nim在奇数位上取硬币使SG值回到0;

如果对方在偶数位上取硬币。那么我们就把他刚刚从偶数位上传到奇数位上的硬币数。

原封不动的再传回偶数位。这样就可以保持SG=0;

  因此把阶梯问题看作奇数项的Nim游戏。

【代码】

 #include<cstdio>
#include<algorithm>
using namespace std; int a[],n; int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
sort(a+,a+n+);
int ans=,s=;
for(int i=n;i>;i-=)
ans^=a[i]-a[i-]-;
if(ans) puts("Georgia will win");
else puts("Bob will win");
}
return ;
}

poj 1704 Georgia and Bob(阶梯博弈)的更多相关文章

  1. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9363   Accepted: 3055 D ...

  2. hdu 4315 Climbing the Hill && poj 1704 Georgia and Bob阶梯博弈--尼姆博弈

    参考博客 先讲一下Georgia and Bob: 题意: 给你一排球的位置(全部在x轴上操作),你要把他们都移动到0位置,每次至少走一步且不能超过他前面(下标小)的那个球,谁不能操作谁就输了 题解: ...

  3. POJ 1704 Georgia and Bob(阶梯Nim博弈)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11357   Accepted: 3749 Description Geor ...

  4. POJ 1704 Georgia and Bob【博弈】

    题目链接: http://poj.org/problem?id=1704 题意: 给定棋子及其在格子上的坐标,两个人轮流选择一个棋子向左移动,每次至少移动一格,但是不可以碰到其他棋子.无路可走的时候视 ...

  5. POJ 1704 Georgia and Bob [阶梯Nim]

    题意: 每次可以向左移动一个棋子任意步,不能跨过棋子 很巧妙的转化,把棋子间的空隙看成石子堆 然后裸阶梯Nim #include <iostream> #include <cstdi ...

  6. POJ 1704 Georgia and Bob(阶梯博弈+证明)

    POJ 1704 题目链接 关于阶梯博弈有如下定理: 将所有奇数阶梯看作n堆石头,做Nim,将石头从奇数堆移动到偶数堆看作取走石头,同样地,异或值不为0(利己态)时,先手必胜. 定理证明看此博:htt ...

  7. POJ 1704 Georgia and Bob(阶梯博弈)题解

    题意:有一个一维棋盘,有格子标号1,2,3,......有n个棋子放在一些格子上,两人博弈,只能将棋子向左移,不能和其他棋子重叠,也不能跨越其他棋子,不能超越边界,不能走的人输 思路:可以用阶梯博弈来 ...

  8. POJ1704 Georgia and Bob (阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Subm ...

  9. POJ.1704.Georgia and Bob(博弈论 Nim)

    题目链接 \(Description\) 一个1~INF的坐标轴上有n个棋子,给定坐标Pi.棋子只能向左走,不能跨越棋子,且不能越界(<1).两人每次可以将任意一个可移动的棋子向左移动一个单位. ...

随机推荐

  1. SQL几个有点偏的语句

    SQL语句是一种集合操作,就是批量操作,它的速度要比其他的语言快,所以在设计的时候很多的逻辑都会放在sql语句或者存储过程中来实现,这个是一种设计思想.但是今天我们来讨论另外一个话题.Sql页提供了丰 ...

  2. 如何获得Windows 8中已记住的WIFI的明文密码

    网上很流行的一种查看WIFI密码明文的方法,如下: 今天遇到了一种状况,就是如果不连WIFI的情况我能抓到这个密码吗?(实在不想开口问同事密码多少,只能苦逼的自己想办法了o(︶︿︶)o ) 答案当然是 ...

  3. hibernate 对象状态异常:object references an unsaved transient instance - save the transient instance before flushing

    我的问题出在,删除的对象对应的表中有一个外键,关联着另外一个表,可是另外一个表中没有数据,所以报了这个错误. 参考http://www.cnblogs.com/onlywujun/archive/20 ...

  4. iOS 正则表达式-判断邮箱、手机号

    判断是否是邮箱 -(BOOL)isValidateEmail:(NSString *)email { NSString *emailRegex = @"[A-Z0-9a-z._%+-]+@[ ...

  5. why slow thinking wins

    今天Hacker News上的一篇文章<为什么想得慢的人能赢>引起了广泛的讨论. 网友Scott Burson在文章后评论说:"之前,我雇佣了一位TopCoder冠军,原本预计他 ...

  6. Fibonacci 数列递归 重复计算

    public class Fibonacci{ public static long F(long n){ System.out.println("call F" + n); ) ...

  7. 『重构--改善既有代码的设计』读书笔记----Replace Array with Object

    如果你有一个数组,其中的元素各自代表不同东西,比如你有一个 QList<QString> strList; 其中strList[0]代表选手姓名,strList[1]代表选手家庭住址,很显 ...

  8. AS3.0面向对象的写法,类和实例

    package /*package是包路径,例如AS文件在ActionScript文件夹下,此时路径应为package ActionScript.必须有的.package中只能有一个class,在一个 ...

  9. 利用def生成dll文件

    DLL中导出函数的声明有两种方式:一种为在函数声明中加上__declspec(dllexport),这里不再举例说明:另外一种方式是采用模块定义(.def) 文件声明,.def文件为链接器提供了有关被 ...

  10. There are no accidents.

    愿你攒齐足够多的失望,开启新的生活. 要知道,瀑布是江河走投无路时创造的奇迹