bzoj3438
很容易想到是最小割模型
首先对于一个点i,从s到i连一条容量为ai的边,再从i连一条容量为bi的边到t
然后就是处理附加权的问题了
一开始受到之前的思维定势的影响,一直在思考怎么在作物之间连边
由于每种额外收益对应多种作物,而不再是原来bzoj2132的二元关系最小割,这是不行的
所以我们考虑可以把一种组合作物方式看成一个两点u,v,表示同时种在一个A、B田里的两种情况
对于u,我们连边s-->u 容量为c1,再从u向对应每种作物连一条容量inf的边
对于v,我们连边v-->t 容量为c2,再从对应每个作物向v连一条容量inf的边(组合方式是固定的,这些边当然不能割去)
不难发现,做最小割后s-->u,v-->t的容量不能同时保存,
且同时假设保留s-->u 那么对应作物与t的连边一定被割去,相当于对应作物都种在A地中
保留v-->t同理,所以这样建图做最小割是正确的
最终ans=所有收益-mincut
还有种想法我觉得更好的是做最大权闭合子图
首先我们把所有作物都种在A田地里,然后再通过调整选一些作物种在B里取得最优答案
我们把每个额外收益看作一个点,点权为c2-c1,每个作物的点权为bi-ai;
要选取某个作物组合改成种在B里,那么必然所对应的作物也都要种在B里
这就相当于选择一个点集,其中每个点的指向的点也在点集中,使这样一个点权和最大
很容易想到是一个最大权闭合子图问题,最大权闭合子图的做法具体见bzoj1497,这里就不多说
这种调整思路和判断混合图欧拉回路颇有异曲同工之妙
这里采用的是第一种方法
const inf=;
type node=record
next,flow,point:longint;
end; var edge:array[..] of node;
p,numh,h,d,cur,pre:array[..] of longint;
t,x,y,k,i,j,n,m,len,a,s:longint; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure add(x,y,f:longint);
begin
inc(len);
edge[len].point:=y;
edge[len].flow:=f;
edge[len].next:=p[x];
p[x]:=len;
end; function sap:longint;
var i,j,q,tmp,u,neck:longint;
begin
sap:=;
fillchar(h,sizeof(h),);
numh[]:=t+;
for i:= to t do
cur[i]:=p[i];
u:=;
sap:=;
neck:=inf;
while h[]<t+ do
begin
d[u]:=neck;
i:=cur[u];
while i<>- do
begin
j:=edge[i].point;
if (edge[i].flow>) and (h[u]=h[j]+) then
begin
pre[j]:=u;
cur[u]:=i;
neck:=min(neck,edge[i].flow);
u:=j;
if u=t then
begin
sap:=sap+neck;
while u<> do
begin
u:=pre[u];
j:=cur[u];
dec(edge[j].flow,neck);
inc(edge[j xor ].flow,neck);
end;
neck:=inf;
end;
break;
end;
i:=edge[i].next;
end;
if i=- then
begin
dec(numh[h[u]]);
if numh[h[u]]= then exit;
q:=-;
tmp:=t;
i:=p[u];
while i<>- do
begin
j:=edge[i].point;
if edge[i].flow> then
if h[j]<tmp then
begin
q:=i;
tmp:=h[j];
end;
i:=edge[i].next;
end;
h[u]:=tmp+;
cur[u]:=q;
inc(numh[h[u]]);
if u<> then
begin
u:=pre[u];
neck:=d[u];
end;
end;
end;
end; begin
len:=-;
fillchar(p,sizeof(p),);
readln(n);
for i:= to n do
begin
read(x);
s:=s+x;
add(,i,x);
add(i,,);
end;
readln;
for i:= to n do
begin
read(h[i]);
s:=s+h[i];
end;
readln(m);
t:=m*+n+;
for i:= to n do
begin
add(i,t,h[i]);
add(t,i,);
end;
for i:= to m do
begin
read(k,x,y);
s:=s+x+y;
add(,i+n,x);
add(i+n,,);
add(i+n+m,t,y);
add(t,i+n+m,);
for j:= to k do
begin
read(a);
add(i+n,a,inf);
add(a,i+n,);
add(a,i+n+m,inf);
add(i+n+m,a,);
end;
readln;
end;
writeln(s-sap);
end.
bzoj3438的更多相关文章
- 一类最小割bzoj2127,bzoj2132 bzoj3438
思考一下我们接触的最小割问题 最小割的基本问题(可能会和图论的知识相结合,比如bzoj1266,bzoj1797) 最大权闭合图(bzoj1497) 最大点权覆盖集,最大点权独立集(bzoj1324) ...
- 【bzoj3438】 小M的作物
http://www.lydsy.com/JudgeOnline/problem.php?id=3438 (题目链接) 题意 $n$种作物,每种可以种在A田也可以种在B田,两种种植方法有不同的收益.$ ...
- 【BZOJ3438】小M的作物 最小割
[BZOJ3438]小M的作物 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1. ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
- 【BZOJ-3438】小M的作物 最小割 + 最大权闭合图
3438: 小M的作物 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 825 Solved: 368[Submit][Status][Discuss ...
- BZOJ3438 小M的作物
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=3438 这题觉得和上题有点类似吧. 如果没有联合在一起的收成,可以比较好做[我们将属于A的表 ...
- BZOJ3438小M的作物——最小割
题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可 ...
- BZOJ3438:小M的作物 (最大闭合权图->最小割)
小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai ...
- BZOJ3894:文理分科(最大流)(同BZoj3438)
文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从文科和理科中选 ...
随机推荐
- iOS 使用Charts框架 折线,柱状,K线,饼状,雷达全攻略
我是前言: 大约几个月前我在某平台写了一篇文章, 文中简单地介绍了Charts两种图表的样式的使用, 不过有种意犹未尽的感觉, 利用周末的空闲时间再次看了看, 有了新的收获, 今天发出来,分享给大家, ...
- Java基础知识强化06:使用BigDecimal计算阶乘1+1/2!+1/3!+……
package himi.hebao04; import java.math.BigDecimal; public class TestDemo07 { public static void main ...
- 最近的两个小项目,1:在Vscode里写C/C++
时间过得真快,一眨眼一个多月没更新了,但这一个月我可没偷懒啊,真的是忙.粘上两篇ReadMe勉强凑合一下,保持博客更新是好习惯. VscodeCppDemo Try to develop C/C++ ...
- easyui总结
1.设置一个区域可拖动的第一种方法直接用html<div id="dd" style="width:100px;height:100px;">< ...
- git常见指令
master : 默认开发分支: origin : 默认远程版本库 初始化操作 $ git config -global user.name <name> #设置提交者名字 $ ...
- xcode-select: error: tool 'xcodebuild' requires Xcode, but active developer directory '/Library/Deve
以上错误是因为安装了 xcode , 但并不是系统默认的位置, 所以可以使用以下命令把 xcode 的路径修改为你安装的位置即可 sudo xcode-select --switch /Applica ...
- xargs rm -rf 与 -exec rm
# find ./ -exec rm {} \; # find ./ | xargs rm -rf 两者都可以把find命令查找到的结果删除,其区别简单的说是前者是把find发现的结果一次性传给exe ...
- 抓取锁的sql语句-第七次修改
最近闲来没事,把之前写的那个抓取锁的存储过程重新修改.优化了一下,呵呵 create or replace procedure solve_lock_061203_wanjie(v_msg out v ...
- 【工具篇】xshell
SSH.telnet.串口登录等,类似Secure CRT,蛮好用的. 中文显示乱码的解决方法,file->properties,在Encoding那里修改为UTF-8 修改颜色,点Edit修改 ...
- Android 新版NDK环境搭建(免Cygwin)
使用最新ndk,直接抛弃cygwin,以前做Android的项目要用到NDK就必须要下载NDK,下载安装Cygwin(模拟Linux环境用的),下载CDT(Eclipse C/C++开发插件),还要配 ...