描述 Description
  applepi被囚禁的地点只有一扇门,当地 人称它为“黑魔法师之门”。这扇门上画着一张无向无权图,而打开这扇门的密码就是图中【每个点的度数大于零且都是偶数】的子图的个数对 1000000009取模的值。此处子图 (V, E) 定义为:点集V和边集E都是原图的任意子集,其中E中的边的端点都在V中。
  但是Vani认为这样的密码过于简单,因此门上的图是动态的。起初图中只有N个顶点而没有边。Vani建造的门控系统共操作M次,每次往图中添加一条边。你必须在每次操作后都填写正确的密码,才能够打开黑魔法师的牢狱,去拯救伟大的领袖applepi。

题解:
题意很清楚,但是感觉很神。。。
刚开始一直在想如何构造,发现太复杂
然后查题解发现只有要当前两点在同一连通块里,ans*=2,最后输出ans-1
表示不理解,就没写。
昨天翻到了lyd的题解
他引入了一个叫 元环 的东西,然后证明答案就是 2^元环的个数
我表示对元环的概念不理解,然后发现如果把整张图画在一张平面上,那么 元环 就是 区域!
然后为什么加入一条边连接两个已在同一连通块里的时候区域数+1呢?
这使我想到了欧拉公式:
V+F-E=2
其中 V表顶点数,F表区域数,E表边数
加入一条边后E++,V不变,所以F要++
至于为什么答案就是2^区域-1
出题人说:
每一个区域有选或不选2种情况,若选就把这个区域的边界的边的选择次数++,最后把所有选择次数为奇数的边选出来救能够成答案。可以证明这是不重不漏的。
至于为什么不重不漏,我还没有思考出结果。
挖坑待填。。。
代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 250000

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000009

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
int n,m,fa[maxn];
inline int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();m=read();
for1(i,n)fa[i]=i;
int ans=;
for1(i,m)
{
int x=find(read()),y=find(read());
if(x!=y)fa[x]=y;else ans<<=,ans%=mod;
printf("%d\n",(ans-+mod)%mod);
} return ; }

[Poetize I]黑魔法师之门的更多相关文章

  1. TyvjP1863 [Poetize I]黑魔法师之门(2014-8-27)

    P1863 [Poetize I]黑魔法师之门 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源 ...

  2. tyvj1863 [Poetize I]黑魔法师之门

    背景 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源.然而在与Violet星球的战争中,由于Z副官的愚蠢,地球的领袖applepi被邪恶的黑魔法师Vani囚禁在了Violet星球.为了 ...

  3. CODEVS1995 || TYVJ1863 黑魔法师之门

    P1863 [Poetize I]黑魔法师之门 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源 ...

  4. CNUOJ 535 黑魔法师之门

    先摆出题 难度级别:C: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 背景: 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源 ...

  5. JZOJ 3385. 【NOIP2013模拟】黑魔法师之门

    3385. [NOIP2013模拟]黑魔法师之门 (Standard IO) Time Limits: 1000 ms  Memory Limits: 131072 KB  Detailed Limi ...

  6. AC日记——黑魔法师之门 codevs 1995

    1995 黑魔法师之门  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 经过了16个工作日的紧张 ...

  7. [JZOJ3385] [NOIP2013模拟] 黑魔法师之门 解题报告(并查集)

    Description 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源.然而在与Violet星球的战争中,由于Z副官的愚蠢,地球的领袖applepi被邪恶的黑魔法师Vani囚禁在了Vi ...

  8. 黑魔法师之门 (magician)-并查集

    题目 经过了 16 个工作日的紧张忙碌,未来的人类终于收集到了足够的能源.然而在与 Violet 星球的战争中,由于 Z 副官的愚蠢,地球的领袖 applepi 被邪恶的黑魔法师 Vani 囚禁在了 ...

  9. 【NOIP2013模拟】黑魔法师之门

    题目描述 经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源.然而在与Violet星球的战争中,由于Z副官的愚蠢,地球的领袖applepi被邪恶的黑魔法师Vani囚禁在了Violet星球. ...

随机推荐

  1. MyTask2

    先把核心代码贴上 public void solve() { //Console.WriteLine("请输入你需要生成多少人的数据以及年龄最大值(75以内):"); //int ...

  2. JAVA导出Excel封装

    1.数据bean public class ExcelBean { private String name; private String sheetName; private ExcelTitle[ ...

  3. sqlserver 时间 格式化

    0   或   100   (*)     默认值   mon   dd   yyyy   hh:miAM(或   PM)       1   101   美国   mm/dd/yyyy       ...

  4. escape character.

    /* 转义字符:通过\ 来转变后面字母或者符号的含义. \n:换行. \b:退格.相当于backspace. \r:按下回车键.window系统,回车符是由两个字符来表示\r\n. \t:制表符.相当 ...

  5. 多列的行列转换(PIVOT,UNPIVOT)

    形式1 形式2 形式3 有时候可能会有这样的需求: 将一张表的所有列名转做为数据的一列数据,将一列数据作为整张表的列名 当列比较多时,只用PIVOT是解决不了的,经过研究,需要将UNPIVOT 和 P ...

  6. 向RichTextBox控件不停的AppendText数据时,如何把光标的焦点始终显示到最后

    上面是csdn上的一个网友的问题,我的一个实现如下://让文本框获取焦点this.richTextBoxInfo.Focus();//设置光标的位置到文本尾this.richTextBoxInfo.S ...

  7. 13号中断 int 13(转)

    第一部分      简      介      1,1      一.    硬盘结构简介              1.    硬盘参数释疑              到目前为止,    人们常说的 ...

  8. ueditor的过滤、转义、格式丢失问题

    1. 过滤 http://www.cnblogs.com/Olive116/p/3464495.html 2. 转义 http://segmentfault.com/q/101000000048928 ...

  9. 常用jQuery选择器总结【转】

    在Dom 编程中我们只能使用有限的函数根据id 或者TagName 获取Dom 对象. 然而在jQuery 中则完全不同,jQuery 提供了异常强大的选择器用来帮助我们获取页面上的对象, 并且将对象 ...

  10. IOS 命令行安装备忘

    1. 首先要越狱 2. 新增BIGBOSS或者苹果核的源 3. 安装MobileTerminal和MobileTerm Backgrounder (用于后台运行命令),最好r520以上版本,R530还 ...