【问题描述】
给出n个数qi,给出Fj的定义如下:
令Ei=Fi/qi。试求Ei。
【输入格式】
输入文件force.in包含一个整数n,接下来n行每行输入一个数,第i行表示qi。
【输出格式】
输出文件force.out有n行,第i行输出Ei。与标准答案误差不超过1e-2即可。
【样例输入】
5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
【样例输出】
-16838672.693
3439.793
7509018.566
4595686.886
10903040.872
【数据规模与约定】
对于30%的数据,n≤1000。
对于50%的数据,n≤60000。
对于100%的数据,n≤100000,0<qi<1000000000。

【分析】

这道题...在省选里面相当裸了。

自己把式子展开一下,发现跟卷积是类似的。

于是对公式的前半部分做一下FFT,后半部分再做一下FFT,减一下,然后就是公式的样子了。

感觉对FFT的理解更进一步了。

 /*
宋代苏轼
《临江仙·夜饮东坡醒复醉》
夜饮东坡醒复醉,归来仿佛三更。家童鼻息已雷鸣。敲门都不应,倚杖听江声。
长恨此身非我有,何时忘却营营。夜阑风静縠纹平。小舟从此逝,江海寄余生。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#define LOCAL
const double Pi = acos(-1.0);
const int MAXN = * * + ;
using namespace std;
struct Num{
double a, b;
Num(double x = , double y = ){a = x; b = y;}
Num operator + (const Num &c){return Num(a + c.a, b + c.b);}
Num operator - (const Num &c){return Num(a - c.a, b - c.b);}
Num operator * (const Num &c){return Num(a * c.a - b * c.b, a * c.b + b * c.a);}
}x1[MAXN], x2[MAXN];
double data[MAXN], Ans[MAXN];
int n;
//交换成蝴蝶顺序
void change(Num *t, int len, int loglen){
for (int i = ; i < len; i++){
int k = , x = i, tmp = loglen;
while (tmp--) {k = (k<<) + (x & );x >>= ;}
if (k < i) swap(t[k], t[i]);
}
return;
}
//0为逆向
void FFT(Num *x, int len, int loglen, int type){
if (type) change(x, len, loglen);
int t;//t代表长度
t = (type ? : (<<loglen));
for (int i = ; i < loglen; i++){
if (!type) t >>= ;
int l = , r = l + t;
while (l < len){
Num a, b;//临时变量
Num tmp(, ), w(cos(Pi / t), (type ? : -) * sin(Pi / t));
for (int j = l; j < l + t; j++){
if (type){
a = x[j];
b = x[j + t] * tmp;
x[j] = a + b;
x[j + t] = a - b;
}else{
a = x[j] + x[j + t];
b = (x[j] - x[j + t]) * tmp;
x[j] = a;
x[j + t] = b;
}
tmp = tmp * w;
}
l = r + t;
r = l + t;
}
if (type) t <<= ;
}
if (!type){
change(x, len, loglen);
for (int i = ; i < len; i++) x[i].a /= len;
}
}
void init(){
memset(x1, , sizeof(x1));
memset(x2, , sizeof(x2));
int len = ;
while (( << len) < n) len++;
len++;
for (int i = ; i < n; i++) x1[i] = Num(data[i], );
for (int i = ; i < n; i++) x2[i] = Num((double)1.0 / (double)(i * (double)i), );
//for (int i = 1; i < n; i++) printf("%lf\n", x2[i].a); FFT(x1, (<<len), len, );
FFT(x2, (<<len), len, );
for (int i = ; i < ( << len); i++) x1[i] = x1[i] * x2[i];
FFT(x1, (<<len), len, );
}
void debug(){
int len = ;
scanf("%d", &n);
while ((<<len) <= (n << )) len++;
for (int i = ; i < n; i++) scanf("%lf", &x1[i].a);
for (int i = ; i < n; i++) scanf("%lf", &x2[i].a);
FFT(x1, (<<len), len, );
FFT(x2, (<<len), len, );
for (int i = ; i < ( << len); i++) x1[i] = x1[i] * x2[i];
FFT(x1, (<<len), len, );
for (int i = ; i < n; i++) printf("%lf\n", x1[i].a);
} int main() { scanf("%d", &n);
for (int i = ; i < n; i++) scanf("%lf", &data[i]);
init();
for (int i = ; i < n; i++) Ans[i] = x1[i].a;
reverse(data, data + n);
init();
for (int i = ; i < n; i++) Ans[i] -= x1[n - - i].a;
for (int i = ; i < n; i++) printf("%.3lf\n", Ans[i]);
//debug();
return ;
}

【BZOJ3527】【FFT】力的更多相关文章

  1. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

  2. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  3. 【BZOJ-3527】力 FFT

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 89 ...

  4. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  5. 2019.02.28 bzoj3527: [Zjoi2014]力(fft)

    传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai​,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...

  6. BZOJ3527 [Zjoi2014]力 【fft】

    题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...

  7. [BZOJ3527][ZJOI2014]力 FFT+数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...

  8. [BZOJ3527][ZJOI2014]力:FFT

    分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...

  9. BZOJ3527[Zjoi2014]力——FFT

    题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...

  10. [bzoj3527][Zjoi2014]力_FFT

    力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...

随机推荐

  1. Web Service学习笔记

    Web Service概述 Web Service的定义 W3C组织对其的定义如下,它是一个软件系统,为了支持跨网络的机器间相互操作交互而设计.Web Service服务通常被定义为一组模块化的API ...

  2. Android 2014年1月22日

    一.广播优先顺序 Android广播有两个很重要的要素:    1 广播 - 用于发送广播 有序广播  -  被广播接收器接收后,可被终止,无法往下继续传达.         典型代表:短信广播 普通 ...

  3. map/reduce实现数据去重

    import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.co ...

  4. Oracle 字符集的查看和修改

    Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系.ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据.它使数据库工具,错误消息,排序次序,日期 ...

  5. nyoj 1036 非洲小孩【贪心区间选点】

    非洲小孩 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 家住非洲的小孩,都很黑.为什么呢?第一,他们地处热带,太阳辐射严重.第二,他们不经常洗澡.(常年缺水,怎么洗 ...

  6. rsync学习与实践

    1.介绍:开源的.快速的.多功能的可以实现全量和增量备份的工具:还能实现文件的删除等:可以根据文件大小的变化和修改时间的变化来同步数据(快速) 2.描述:支持特殊文件的拷贝,例如设备文件,链接等:可以 ...

  7. Linux无处不在

    Linux is Everywhere从政府.教育.商业和非盈利组织.科研机构几个方面展示了现在都有哪些地方用了Linux.

  8. Python调用C可执行程序(subprocess) 分类: python 服务器搭建 C/C++ shell 2015-04-13 21:03 87人阅读 评论(0) 收藏

    从Python 2.4开始,Python引入subprocess模块来管理子进程,以取代一些旧模块的方法:如 os.system.os.spawn.os.popen.popen2.commands. ...

  9. lucene索引并搜索mysql数据库[转]

    由于对lucene比较感兴趣,本人在网上找了点资料,终于成功地用lucene对mysql数据库进行索引创建并成功搜索,先总结如下: 首先介绍一个jdbc工具类,用于得到Connection对象: im ...

  10. [TypeScript] Loading Compiled TypeScript Files in Browser with SystemJS

    TypeScript outputs JavaScript, but what are you supposed to do with it? This lesson shows how to tak ...