左偏树是一种常用的优先队列(堆)结构。与二叉堆相比,左偏树可以高效的实现两个堆的合并操作。

左偏树实现方便,编程复杂度低,而且有着不俗的效率表现。

它的一个常见应用就是与并查集结合使用。利用并查集确定两个元素是否在同一集合,利用左偏树确定某个集合中优先级最高的元素。

 #include <cstdio>
 #include <cstring>
 #include <algorithm>

 template <class T>
 struct HeapNode
 {
     typedef HeapNode<T> Node;
     Node* lch;
     Node* rch;
     T val;
     int dist;

     HeapNode(),rch(),val(_val),dist() {}

     void clear()
     {
         if(lch) lch->clear();
         if(rch) rch->clear();
         delete this;
     }
 };

 template <class T,class Comp>
 struct LeftistHeap
 {
     typedef HeapNode<T> Node;
     typedef LeftistHeap<T,Comp> Heap;

     Node* root;
     Comp cmp;

     LeftistHeap():root() {}
     ~LeftistHeap()
     {
         clear();
     }

     void clear()
     {
         if(root) root->clear();
         root=;
     }

     Node* merge(Node* A,Node* B)
     {
         if(!A) return B;
         if(!B) return A;

         if(cmp(B->val,A->val)) std::swap(A,B);
         A->rch=merge(B,A->rch);

         if(!A->lch || A->rch->dist > A->lch->dist)
             std::swap(A->lch,A->rch);
         A->dist = (A->rch) ? A->rch->dist +  :  ;

         return A;
     }

     void push(const T& _val)
     {
         Node* nNode=new Node(_val);
         root=merge(root,nNode);
     }

     Heap& operator << (const T& _val)
     {
         push(_val);
         return *this;
     }

     T top()
     {
         return root->val;
     }

     void pop()
     {
         Node* temp=root;
         root=merge(temp->lch,temp->rch);
         delete temp;
     }

     Heap& operator >> (T& _dest)
     {
         _dest=top();
         pop();
         return *this;
     }

     void merge(Heap& _other)
     {
         this->root=merge(this->root,_other.root);
         _other.root=;
     }

     bool empty()
     {
         ;
     }
 };

Leftist Heap

定义左偏树节点的“距离”(dist)为从其右子树开始,一直向右走的路径总长。特别地,若某个节点没有右孩子,其dist值为0。

树中的每个节点都必须满足左孩子的dist值不小于右孩子(如果有的话)的dist值。

和大多数可并堆一样,左偏树的核心操作就是合并(Merge)操作。

(以下伪代码以小根堆为例,节点的数据域记为val)

function merge(Node* A,Node* B)

if(A和B中某一个为空) return 另一个   //特判,同时也是递归终止的条件

交换A和B(如果需要的话),使得A的val小于B的val

A->rch = merge(B,A->rch)

if(A的左孩子的dist小于右孩子的dist或A的左孩子不存在) 交换A的左、右孩子

根据A的右孩子更新A的dist

return A

实现细节详见代码。

有了合并操作,其他的也就水到渠成了:

插入(push):建立一个新节点,然后把它视为一个左偏树,将其与已有的合并。

删除(pop):删除其根节点,合并原先根节点的左右孩子。

附一道左偏树+并查集的练习题:

 #include <cstdio>
 #include <cstring>
 #include <algorithm>

 template <class T>
 struct HeapNode
 {
     typedef HeapNode<T> Node;
     Node* lch;
     Node* rch;
     T val;
     int dist;

     HeapNode(),rch(),val(_val),dist() {}

     void clear()
     {
         if(lch) lch->clear();
         if(rch) rch->clear();
         delete this;
     }
 };

 template <class T,class Comp>
 struct LeftistHeap
 {
     typedef HeapNode<T> Node;
     typedef LeftistHeap<T,Comp> Heap;

     Node* root;
     Comp cmp;

     LeftistHeap():root() {}
     ~LeftistHeap()
     {
         clear();
     }

     void clear()
     {
         if(root) root->clear();
         root=;
     }

     Node* merge(Node* A,Node* B)
     {
         if(!A) return B;
         if(!B) return A;

         if(cmp(B->val,A->val)) std::swap(A,B);
         A->rch=merge(B,A->rch);

         if(!A->lch || A->rch->dist > A->lch->dist)
             std::swap(A->lch,A->rch);
         A->dist = (A->rch) ? A->rch->dist +  :  ;

         return A;
     }

     void push(const T& _val)
     {
         Node* nNode=new Node(_val);
         root=merge(root,nNode);
     }

     Heap& operator << (const T& _val)
     {
         push(_val);
         return *this;
     }

     T top()
     {
         return root->val;
     }

     void pop()
     {
         Node* temp=root;
         root=merge(temp->lch,temp->rch);
         delete temp;
     }

     Heap& operator >> (T& _dest)
     {
         _dest=top();
         pop();
         return *this;
     }

     void merge(Heap& _other)
     {
         this->root=merge(this->root,_other.root);
         _other.root=;
     }

     bool empty()
     {
         ;
     }
 };

 #include <functional>

 ;

 int N,M;
 int idx[maxN];

 int father(int x)
 {
     return idx[x]==x ? x : idx[x]=father(idx[x]) ;
 }

 LeftistHeap<int,std::greater<int> > heap[maxN];

 void init()
 {
     ;i<maxN;i++) heap[i].clear();
     ;i<maxN;i++) idx[i]=i;
 }

 bool solve()
 {
     init();

     if(scanf("%d",&N)==EOF) return false;
     ;i<=N;i++)
     {
         int s; scanf("%d",&s);
         heap[i].push(s);
     }

     scanf("%d\n",&M);
     while(M--)
     {
         int mk1,mk2;
         scanf("%d%d",&mk1,&mk2);

         int f1=father(mk1);
         int f2=father(mk2);
         if(f1==f2)
         {
             printf("-1\n");
             continue;
         }

         int s1,s2;
         heap[f1]>>s1;
         heap[f2]>>s2;

         if(f1<f2)
         {
             idx[f2]=f1;
             heap[f1].merge(heap[f2]);
             );
             ));
             heap[f1] << (s1>>) << (s2>>);
         }
         else
         {
             idx[f1]=f2;
             heap[f2].merge(heap[f1]);
             );
             ));
             heap[f2] << (s1>>) << (s2>>);
         }
     }

     return true;
 }

 int main()
 {
     while(solve());
     ;
 }

Problem:ZOJ P2334

左偏树(Leftist Heap/Tree)简介及代码的更多相关文章

  1. 『左偏树 Leftist Tree』

    新增一道例题 左偏树 Leftist Tree 这是一个由堆(优先队列)推广而来的神奇数据结构,我们先来了解一下它. 简单的来说,左偏树可以实现一般堆的所有功能,如查询最值,删除堆顶元素,加入新元素等 ...

  2. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  3. 左偏树 / 非旋转treap学习笔记

    背景 非旋转treap真的好久没有用过了... 左偏树由于之前学的时候没有写学习笔记, 学得也并不牢固. 所以打算写这么一篇学习笔记, 讲讲左偏树和非旋转treap. 左偏树 定义 左偏树(Lefti ...

  4. 浅谈左偏树在OI中的应用

    Preface 可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作. 考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log ...

  5. [note]左偏树(可并堆)

    左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...

  6. Monkey King(左偏树 可并堆)

    我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...

  7. P3378 【模板】堆 (内含左偏树实现)

    P3378 [模板]堆 题解 其实就是一个小根堆啦,STL就可以解决,但是拥有闲情雅致的我学习了Jelly_Goat的左偏树,增加了代码长度,妙啊 Solution 1 STL STL 里面prior ...

  8. 左偏树初步 bzoj2809 & bzoj4003

    看着百度文库学习了一个. 总的来说,左偏树这个可并堆满足 堆的性质 和 左偏 性质. bzoj2809: [Apio2012]dispatching 把每个忍者先放到节点上,然后从下往上合并,假设到了 ...

  9. k短路模板(洛谷P2483 [SDOI2010]魔法猪学院)(k短路,最短路,左偏树,priority_queue)

    你谷数据够强了,以前的A*应该差不多死掉了. 所以,小伙伴们快来一起把YL顶上去把!戳这里! 俞鼎力的课件 需要掌握的内容: Dijkstra构建最短路径树. 可持久化堆(使用左偏树,因其有二叉树结构 ...

随机推荐

  1. JavaScript高级程序设计41.pdf

    事件对象 在触发DOM上某个事件时,会产生一个事件对象event,这个对象中包含着所有与事件有关的信息. DOM中的事件对象 兼容DOM的浏览器会将event对象传入到事件处理程序中,无论指定事件处理 ...

  2. usaco 打扫食槽

    Description 从前奶牛是不挑食的,但现在世道变了,她们变得非常挑剔.牧场里有N头奶牛,约翰 要向她们提供M种食物,第i头奶牛只会吃Pi号食物. 约翰每天都要打扫食槽,这件事非常累.奶牛沿着食 ...

  3. jQuery 的属性操作方法

    jQuery 属性操作方法 下面列出的这些方法获得或设置元素的 DOM 属性. 这些方法对于 XML 文档和 HTML 文档均是适用的,除了:html(). 方法 描述 addClass() 向匹配的 ...

  4. 使用webdav实现文档共享

    1.PC1上开启WebDAV的服务,添加创建规则:运行访问的路径.运行访问的用户(这里的用户是指PC1上的用户名和密码).访问权限

  5. Cookie案例分析

    一.案例- 显示用户上次访问的时间 当用户第一次访问该页面的时候提示:你好,你是第一次访问本页面,当前时间为:2016-11-3 22:10:30 第n次访问该页面时:欢迎回来,你上次访问的时间是:2 ...

  6. 笔记本开了WIFI之后只能上QQ,上不了网页的解决方法

    前几天拉了宽带之后,开了WIFI,发现WIFI能上网,但是电脑就上不了网页. 把本地连接的DNS指定一下,(电信)指定为202.102.192.68

  7. 再谈内存管理与ARC运行机制(一)

    内存管理 内存在Objective-C开发中是一种相对稀缺的资源,拿Iphone4为例,它的内存只有512mb,所以妥善的处理好所创造,所使用的每个对象与变量都将成为一个问题.在ARC出现以前,同大部 ...

  8. [Usaco2006 Nov]Corn Fields牧场的安排 壮压DP

    看到第一眼就发觉是壮压DP 然后就三进制枚举子集吧. 这题真是壮压入门好题... 对于dp[i][j] 表示第i行,j状态下前i行的分配方案数. 那么dp[i][j]肯定是从i-1行转过来的 那么由于 ...

  9. 假设但是学习java入门,请离开SSH稍远

    我觉得有点累了步行上班,我想买一辆自行车.结果去了一看,想2500片.旁边的人说,2500所有最好加一些钱,买一挖电. 遂问电动车价格,3500,决定买.却被告知不如加点钱买小踏板摩托划算.于是看摩托 ...

  10. Linux内核源代码情景分析系列

    http://blog.sina.com.cn/s/blog_6b94d5680101vfqv.html Linux内核源代码情景分析---第五章 文件系统  5.1 概述 构成一个操作系统最重要的就 ...