题面:https://www.codechef.com/problems/FNCS

题解:

我们考虑对 n 个函数进行分块,设块的大小为S。

每个块内我们维护当前其所有函数值的和,以及数组中每个元素对这个块函数值的和的贡献系数。

那么每次修改操作我们就可以对每个块函数值的和 O(1)进行修改。

对于询问,落在完整块内的部分我们维护了它的和,直接 O(1)调用即可。

剩余的部分我们对每个函数依次求值。

那么现在问题就变为单点修改、询问区间和。

如果我们使用树状数组,那么单次询问与单次修改复杂度操作均为 O(logn),

而询问操作数目远多于修改操作导致时间效率不平衡。

所以我们对原数组求一遍前缀和,然后问题变为区间修改、单点查询,

这个我们用分块便可以做到 O(S+n/S)修改和 O(1)询问了。

PS:此题卡long long,要用unsigned long long。。。

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
typedef unsigned long long int64;
const int maxs=;
const int maxn=;
int n,q,siz,lim,op,l,r,x,y,bel[maxn];
struct Data{
int l,r;
}block[maxs],seg[maxn];
int a[maxn];
int f[maxs][maxn];
int64 res[maxs],sum[maxs][maxs],tag[maxs];
struct Seg{
int add[maxn<<];
void init(){memset(add,,sizeof(add));}
void pushdown(int k){if (add[k]) add[k<<]+=add[k],add[(k<<)+]+=add[k],add[k]=;}
void modify(int k,int l,int r,int x,int y){
if (l==x&&r==y){add[k]++;return;}
int m=(l+r)>>;
if (y<=m) modify(k<<,l,m,x,y);
else if (x<=m) modify(k<<,l,m,x,m),modify((k<<)+,m+,r,m+,y);
else modify((k<<)+,m+,r,x,y);
}
void get(int k,int l,int r,int id){
if (l==r){f[id][l]=add[k],res[id]+=1ULL*add[k]*a[l];return;}
int m=(l+r)>>;
pushdown(k);
get(k<<,l,m,id),get((k<<)+,m+,r,id);
}
}T;
void add(int x,int v){
int id=bel[x],st=id;
if (x>block[id].l){
for (int i=x;i<=block[id].r;i++) sum[id][i-block[id].l]+=v;
st++;
}
for (int i=st;i<=lim;i++) tag[i]+=v;
}
int64 query(int x){
if (!x) return ;
int id=bel[x];
return sum[id][x-block[id].l]+tag[id];
}
void modify(int x,int v){
add(x,-a[x]);
for (int i=;i<=lim;i++) res[i]-=1ULL*f[i][x]*a[x];
a[x]=v;
add(x,a[x]);
for (int i=;i<=lim;i++) res[i]+=1ULL*f[i][x]*a[x];
}
void query(int l,int r){
int64 ans=;
int st=bel[l],ed=bel[r];
if (st!=ed){
if (l>block[st].l){
for (int i=l;i<=block[st].r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
st++;
}
if (r<block[ed].r){
for (int i=block[ed].l;i<=r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
ed--;
}
for (int i=st;i<=ed;i++) ans+=res[i];
}
else for (int i=l;i<=r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
printf("%llu\n",ans);
}
int main(){
read(n),siz=sqrt(n);
for (int i=;i<=n;i++){
bel[i]=i/siz+;
if (!block[bel[i]].l) block[bel[i]].l=i;
block[bel[i]].r=i;
}
lim=bel[n];
for (int i=;i<=n;i++) read(a[i]),add(i,a[i]);
for (int i=;i<=n;i++){
if (block[bel[i]].l==i) T.init();
read(l),read(r),seg[i]=(Data){l,r};
T.modify(,,n,l,r);
if (block[bel[i]].r==i) T.get(,,n,bel[i]);
}
for (read(q);q;q--){
read(op),read(x),read(y);
if (op==) modify(x,y);
else query(x,y);
}
return ;
}

CodeChef FNCS的更多相关文章

  1. CodeChef FNCS (分块+树状数组)

    题目:https://www.codechef.com/problems/FNCS 题解: 我们知道要求区间和的时候,我们用前缀和去优化.这里也是一样,我们要求第 l 个函数到第 r 个函数 [l, ...

  2. Chef and Problems(from Code-Chef FNCS) ( 回 滚 )

    题目: 题意:给定序列,求[l,r]区间内数字相同的数的最远距离. 链接:https://www.codechef.com/problems/QCHEF #include<bits/stdc++ ...

  3. CodeChef - FNCS Chef and Churu(分块)

    https://vjudge.net/problem/CodeChef-FNCS 题意: 思路: 用分块的方法,对每个函数进行分块,计算出该分块里每个数的个数,这样的话也就能很方便的计算出这个分块里所 ...

  4. [codechef FNCS]分块处理+树状数组

    题目链接:https://vjudge.net/problem/CodeChef-FNCS 在一个地方卡了一晚上,就是我本来以为用根号n分组,就会分成根号n个.事实上并不是....因为用的是根号n下取 ...

  5. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  6. ZJOI2019一轮停课刷题记录

    Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...

  7. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

  8. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  9. 【BZOJ4260】 Codechef REBXOR 可持久化Trie

    看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...

随机推荐

  1. IE的Cookie目录和临时缓存目录的关系

    1.IE的Cookie位置注册表设置: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folde ...

  2. 读书笔记-《基于Oracle的SQL优化》-第一章-3

    优化器: 1.优化器的模式: 用于决定在Oracle中解析目标SQL时所用优化器的类型,以及决定当使用CBO时计算成本值的侧重点.这里的“侧重点”是指当使用CBO来计算目标SQL各条执行路径的成本值时 ...

  3. BufferedInputStream详解

    BufferedInputStream是一个带有缓冲区域的InputStream,它的继承体系如下:  InputStream  |__FilterInputStream          |__Bu ...

  4. 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(7)-MVC与EasyUI DataGrid

    原文:构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(7)-MVC与EasyUI DataGrid 没有源码的同学跳到第六讲下载源码再来. 我们需要漂亮的UI, ...

  5. Python数据类型(元组、列表、字符串、字典)

    元组tuple:不可修改的数据类型 ABC = ('a', 1, x, 'today') 列表list:可修改的数据类型 ABC = ['a', 1, x, 'today'] 字符串set: ABC ...

  6. CTE在Oracle和Sqlserver中使用的差异

    CTE是一个很好用的工具,他可以帮助我们清晰代码结构,减少临时表使用,同时oracle和sqlserver都提供支持.但在oracle和sqlserver中使用CTE也存在一定区别. Oracle使用 ...

  7. angularJS function

    angular.bootstrap 启动Angular angular.element 相当于轻量的JQuery 使用方法: angular.element('#qq'); angular.eleme ...

  8. HTML5 <Audio>标签API整理(一)

    简单实例: <audio id="myAudio"></audio> <script> var myAudio = document.getEl ...

  9. 转: Oracle AWR 报告 每天自动生成并发送邮箱

    原贴地址:http://www.cnblogs.com/vigarbuaa/archive/2012/09/05/2671794.html Oracle AWR 介绍http://blog.csdn. ...

  10. iOS菜鸟之FMDB的二次封装简单易用

    闲来无事写点东西,希望大家多多指正! 大家先去git下载FMDB,然后将其中source文件夹中的fmdb文件夹拖入自己的项目中.最后就可以引用下面的代码对fmdb进行一次简单的封装. 这样可以更直观 ...