CodeChef FNCS
题面:https://www.codechef.com/problems/FNCS
题解:
我们考虑对 n 个函数进行分块,设块的大小为S。
每个块内我们维护当前其所有函数值的和,以及数组中每个元素对这个块函数值的和的贡献系数。
那么每次修改操作我们就可以对每个块函数值的和 O(1)进行修改。
对于询问,落在完整块内的部分我们维护了它的和,直接 O(1)调用即可。
剩余的部分我们对每个函数依次求值。
那么现在问题就变为单点修改、询问区间和。
如果我们使用树状数组,那么单次询问与单次修改复杂度操作均为 O(logn),
而询问操作数目远多于修改操作导致时间效率不平衡。
所以我们对原数组求一遍前缀和,然后问题变为区间修改、单点查询,
这个我们用分块便可以做到 O(S+n/S)修改和 O(1)询问了。
PS:此题卡long long,要用unsigned long long。。。
code:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
typedef unsigned long long int64;
const int maxs=;
const int maxn=;
int n,q,siz,lim,op,l,r,x,y,bel[maxn];
struct Data{
int l,r;
}block[maxs],seg[maxn];
int a[maxn];
int f[maxs][maxn];
int64 res[maxs],sum[maxs][maxs],tag[maxs];
struct Seg{
int add[maxn<<];
void init(){memset(add,,sizeof(add));}
void pushdown(int k){if (add[k]) add[k<<]+=add[k],add[(k<<)+]+=add[k],add[k]=;}
void modify(int k,int l,int r,int x,int y){
if (l==x&&r==y){add[k]++;return;}
int m=(l+r)>>;
if (y<=m) modify(k<<,l,m,x,y);
else if (x<=m) modify(k<<,l,m,x,m),modify((k<<)+,m+,r,m+,y);
else modify((k<<)+,m+,r,x,y);
}
void get(int k,int l,int r,int id){
if (l==r){f[id][l]=add[k],res[id]+=1ULL*add[k]*a[l];return;}
int m=(l+r)>>;
pushdown(k);
get(k<<,l,m,id),get((k<<)+,m+,r,id);
}
}T;
void add(int x,int v){
int id=bel[x],st=id;
if (x>block[id].l){
for (int i=x;i<=block[id].r;i++) sum[id][i-block[id].l]+=v;
st++;
}
for (int i=st;i<=lim;i++) tag[i]+=v;
}
int64 query(int x){
if (!x) return ;
int id=bel[x];
return sum[id][x-block[id].l]+tag[id];
}
void modify(int x,int v){
add(x,-a[x]);
for (int i=;i<=lim;i++) res[i]-=1ULL*f[i][x]*a[x];
a[x]=v;
add(x,a[x]);
for (int i=;i<=lim;i++) res[i]+=1ULL*f[i][x]*a[x];
}
void query(int l,int r){
int64 ans=;
int st=bel[l],ed=bel[r];
if (st!=ed){
if (l>block[st].l){
for (int i=l;i<=block[st].r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
st++;
}
if (r<block[ed].r){
for (int i=block[ed].l;i<=r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
ed--;
}
for (int i=st;i<=ed;i++) ans+=res[i];
}
else for (int i=l;i<=r;i++) ans+=query(seg[i].r)-query(seg[i].l-);
printf("%llu\n",ans);
}
int main(){
read(n),siz=sqrt(n);
for (int i=;i<=n;i++){
bel[i]=i/siz+;
if (!block[bel[i]].l) block[bel[i]].l=i;
block[bel[i]].r=i;
}
lim=bel[n];
for (int i=;i<=n;i++) read(a[i]),add(i,a[i]);
for (int i=;i<=n;i++){
if (block[bel[i]].l==i) T.init();
read(l),read(r),seg[i]=(Data){l,r};
T.modify(,,n,l,r);
if (block[bel[i]].r==i) T.get(,,n,bel[i]);
}
for (read(q);q;q--){
read(op),read(x),read(y);
if (op==) modify(x,y);
else query(x,y);
}
return ;
}
CodeChef FNCS的更多相关文章
- CodeChef FNCS (分块+树状数组)
题目:https://www.codechef.com/problems/FNCS 题解: 我们知道要求区间和的时候,我们用前缀和去优化.这里也是一样,我们要求第 l 个函数到第 r 个函数 [l, ...
- Chef and Problems(from Code-Chef FNCS) ( 回 滚 )
题目: 题意:给定序列,求[l,r]区间内数字相同的数的最远距离. 链接:https://www.codechef.com/problems/QCHEF #include<bits/stdc++ ...
- CodeChef - FNCS Chef and Churu(分块)
https://vjudge.net/problem/CodeChef-FNCS 题意: 思路: 用分块的方法,对每个函数进行分块,计算出该分块里每个数的个数,这样的话也就能很方便的计算出这个分块里所 ...
- [codechef FNCS]分块处理+树状数组
题目链接:https://vjudge.net/problem/CodeChef-FNCS 在一个地方卡了一晚上,就是我本来以为用根号n分组,就会分成根号n个.事实上并不是....因为用的是根号n下取 ...
- Codechef FNCS Chef and Churu
Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu
https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...
- 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树
3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1288 Solved: 490 ...
- 【BZOJ4260】 Codechef REBXOR 可持久化Trie
看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...
随机推荐
- iOS-实现映客首页TabBar和滑动隐藏NavBar和TabBar
之前在做直播的时候,参照了映客App,发现其首页的效果还挺不错,在网上找了一下相关仿映客App代码和博客,大部分都是说如何播放直播流和推流,对于UI这块甚少,所以我自己花了点时间研究了一下映客的首页U ...
- 【设计模式 - 11】之享元模式(FlyWeight)
1 模式简介 当系统中存在大量对象时,非常容易造成内存溢出.为了解决这个问题,我们把这些对象中共有的部分抽象出来,如果有相同的业务请求,则直接返回在内存中已有的对象,避免重新创建,这就是享元 ...
- 下载的chm手册打不开的解决方法?
用ie或者chrome等浏览器下载文件的时候,都会给文件加上一个默认的保护,右键这个文件,打开属性对话框,然后在第一个的选项卡的安全的部分,有个解除这个保护的按钮点下然后确定保存,再打开chm文件就不 ...
- uva 11440 - Help Tomisu(欧拉功能)
题目链接:uva 11440 - Help Tomisu 题目大意:给定n和m,求从2~n.中的数x.要求x的质因子均大于m.问说x有多少个.答案模上1e9+7. 解题思路: (1)n!=k∗m!(n ...
- 颜色渐变的RGB计算
均匀渐变 渐变(Gradient)是美学中一条重要的形式美法则,与其相对应的是突变.形状.大小.位置.方向.色彩等视觉因素都可以进行渐变.在色彩中,色相.明度.纯度也都可以产生渐变效果,并会表现出具有 ...
- 再回首,Java温故知新(一):Java概述
Java发展历程 Java的发展要追溯到1991年,Patrick Naughton(帕特里克·诺顿)和James Gosling(詹姆斯·高斯林)带领Sun公司的工程师打算为有线电视转换盒之类的消费 ...
- css 权威指南笔记(四)选择器
规则结构 每个规则都有两个基本部分组成:选择器和声明块.声明块由一个或多个声明组成,每个声明则是一个属性-值对. 元素选择器 声明和关键字 关键字一般由空格隔开:有一种情况例外 font属性中的 斜 ...
- C语言循环的嵌套
注:参考网络资源拟制,如雷同请见谅循环的嵌套:一个循环体语句中又包含另一个循环语句,称为循环嵌套.嵌套注意事项:1.使用循环嵌套时,内层循环和外层循环的循环控制变量不能相同.2.循环嵌套结构的书写,最 ...
- Oracle11g数据库导入到oracle10g的解决方法
我想有很多人在工作和学习中遇到这样的一个问题,Oracle数据库服务器版本和本机版本不一致问题,你的本机要是比服务器的版本要高的话还好,如果你本机是10g服务器是11g的话,从11g导出来的数据库是导 ...
- SQL SERVER将指定表中的指定字段按照(,)逗号分隔
不开心呀,早知道不跳了,一跳跳坑里来了. 使用方式: DECLARE @ConsigneeAddressId INT; SET @ConsigneeAddressId = 1; SELECT * F ...