THIS IS AN EVOLVING WIKI DOCUMENT. If you find an error, or can fill in an empty box, please fix it! If there's something you'd like to see added, just add it.

General Purpose Equivalents

MATLAB

numpy

Notes

help func

info(func) or help(func) or func? (in Ipython)

get help on the function func

which func

(See note 'HELP')

find out where func is defined

type func

source(func) or func?? (in Ipython)

print source for func (if not a native function)

a && b

a and b

short-circuiting logical AND operator (Python native operator); scalar arguments only

a || b

a or b

short-circuiting logical OR operator (Python native operator); scalar arguments only

1*i,1*j,1i,1j

1j

complex numbers

eps

spacing(1)

Distance between 1 and the nearest floating point number

ode45

scipy.integrate.ode(f).set_integrator('dopri5')

integrate an ODE with Runge-Kutta 4,5

ode15s

scipy.integrate.ode(f).\
set_integrator('vode', method='bdf', order=15)

integrate an ODE with BDF

Linear Algebra Equivalents

The notation mat(...) means to use the same expression as array, but convert to matrix with the mat() type converter.

The notation asarray(...) means to use the same expression as matrix, but convert to array with the asarray() type converter.

MATLAB

numpy.array

numpy.matrix

Notes

ndims(a)

ndim(a) or a.ndim

get the number of dimensions of a (tensor rank)

size(a)

shape(a) or a.shape

get the "size" of the matrix

size(a,n)

a.shape[n-1]

get the number of elements of the nth dimension of array a. (Note that MATLAB® uses 1 based indexing while Python uses 0 based indexing, See note 'INDEXING')

[ 1 2 3; 4 5 6 ]

array([[1.,2.,3.],
[4.,5.,6.]])

mat([[1.,2.,3.],
[4.,5.,6.]]) or
mat("1 2 3; 4 5 6")

2x3 matrix literal

[ a b; c d ]

vstack([hstack([a,b]),
        hstack([c,d])])

bmat('a b; c d')

construct a matrix from blocks a,b,c, and d

a(end)

a[-1]

a[:,-1][0,0]

access last element in the 1xn matrix a

a(2,5)

a[1,4]

access element in second row, fifth column

a(2,:)

a[1] or a[1,:]

entire second row of a

a(1:5,:)

a[0:5] or a[:5] or a[0:5,:]

the first five rows of a

a(end-4:end,:)

a[-5:]

the last five rows of a

a(1:3,5:9)

a[0:3][:,4:9]

rows one to three and columns five to nine of a. This gives read-only access.

a([2,4,5],[1,3])

a[ix_([1,3,4],[0,2])]

rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn't require a regular slice.

a(3:2:21,:)

a[ 2:21:2,:]

every other row of a, starting with the third and going to the twenty-first

a(1:2:end,:)

a[ ::2,:]

every other row of a, starting with the first

a(end:-1:1,:) orflipud(a)

a[ ::-1,:]

a with rows in reverse order

a([1:end 1],:)

a[r_[:len(a),0]]

a with copy of the first row appended to the end

a.'

a.transpose() or a.T

transpose of a

a'

a.conj().transpose() ora.conj().T

a.H

conjugate transpose of a

a * b

dot(a,b)

a * b

matrix multiply

a .* b

a * b

multiply(a,b)

element-wise multiply

a./b

a/b

element-wise divide

a.^3

a**3

power(a,3)

element-wise exponentiation

(a>0.5)

(a>0.5)

matrix whose i,jth element is (a_ij > 0.5)

find(a>0.5)

nonzero(a>0.5)

find the indices where (a > 0.5)

a(:,find(v>0.5))

a[:,nonzero(v>0.5)[0]]

a[:,nonzero(v.A>0.5)[0]]

extract the columms of a where vector v > 0.5

a(:,find(v>0.5))

a[:,v.T>0.5]

a[:,v.T>0.5)]

extract the columms of a where column vector v > 0.5

a(a<0.5)=0

a[a<0.5]=0

a with elements less than 0.5 zeroed out

a .* (a>0.5)

a * (a>0.5)

mat(a.A * (a>0.5).A)

a with elements less than 0.5 zeroed out

a(:) = 3

a[:] = 3

set all values to the same scalar value

y=x

y = x.copy()

numpy assigns by reference

y=x(2,:)

y = x[1,:].copy()

numpy slices are by reference

y=x(:)

y = x.flatten(1)

turn array into vector (note that this forces a copy)

1:10

arange(1.,11.) or 
r_[1.:11.] or 
r_[1:10:10j]

mat(arange(1.,11.))or 
r_[1.:11.,'r']

create an increasing vector see note 'RANGES'

0:9

arange(10.) or 
r_[:10.] or 
r_[:9:10j]

mat(arange(10.)) or 
r_[:10.,'r']

create an increasing vector see note 'RANGES'

[1:10]'

arange(1.,11.)[:, newaxis]

r_[1.:11.,'c']

create a column vector

zeros(3,4)

zeros((3,4))

mat(...)

3x4 rank-2 array full of 64-bit floating point zeros

zeros(3,4,5)

zeros((3,4,5))

mat(...)

3x4x5 rank-3 array full of 64-bit floating point zeros

ones(3,4)

ones((3,4))

mat(...)

3x4 rank-2 array full of 64-bit floating point ones

eye(3)

eye(3)

mat(...)

3x3 identity matrix

diag(a)

diag(a)

mat(...)

vector of diagonal elements of a

diag(a,0)

diag(a,0)

mat(...)

square diagonal matrix whose nonzero values are the elements of a

rand(3,4)

random.rand(3,4)

mat(...)

random 3x4 matrix

linspace(1,3,4)

linspace(1,3,4)

mat(...)

4 equally spaced samples between 1 and 3, inclusive

[x,y]=meshgrid(0:8,0:5)

mgrid[0:9.,0:6.] or 
meshgrid(r_[0:9.],r_[0:6.]

mat(...)

two 2D arrays: one of x values, the other of y values

ogrid[0:9.,0:6.] or 
ix_(r_[0:9.],r_[0:6.]

mat(...)

the best way to eval functions on a grid

[x,y]=meshgrid([1,2,4],[2,4,5])

meshgrid([1,2,4],[2,4,5])

mat(...)

ix_([1,2,4],[2,4,5])

mat(...)

the best way to eval functions on a grid

repmat(a, m, n)

tile(a, (m, n))

mat(...)

create m by n copies of a

[a b]

concatenate((a,b),1) or 
hstack((a,b)) or 
column_stack((a,b)) or 
c_[a,b]

concatenate((a,b),1)

concatenate columns of a and b

[a; b]

concatenate((a,b)) or 
vstack((a,b)) or 
r_[a,b]

concatenate((a,b))

concatenate rows of a and b

max(max(a))

a.max()

maximum element of a (with ndims(a)<=2 for matlab)

max(a)

a.max(0)

maximum element of each column of matrix a

max(a,[],2)

a.max(1)

maximum element of each row of matrix a

max(a,b)

maximum(a, b)

compares a and b element-wise, and returns the maximum value from each pair

norm(v)

sqrt(dot(v,v)) or 
Sci.linalg.norm(v) or 
linalg.norm(v)

sqrt(dot(v.A,v.A))or 
Sci.linalg.norm(v)or 
linalg.norm(v)

L2 norm of vector v

a & b

logical_and(a,b)

element-by-element AND operator (Numpy ufunc) see note 'LOGICOPS'

a | b

logical_or(a,b)

element-by-element OR operator (Numpy ufunc) see note 'LOGICOPS'

bitand(a,b)

a & b

bitwise AND operator (Python native and Numpy ufunc)

bitor(a,b)

a | b

bitwise OR operator (Python native and Numpy ufunc)

inv(a)

linalg.inv(a)

inverse of square matrix a

pinv(a)

linalg.pinv(a)

pseudo-inverse of matrix a

rank(a)

linalg.matrix_rank(a)

rank of a matrix a

a\b

linalg.solve(a,b) if a is square
linalg.lstsq(a,b) otherwise

solution of a x = b for x

b/a

Solve a.T x.T = b.T instead

solution of x a = b for x

[U,S,V]=svd(a)

U, S, Vh = linalg.svd(a), V = Vh.T

singular value decomposition of a

chol(a)

linalg.cholesky(a).T

cholesky factorization of a matrix (chol(a) in matlab returns an upper triangular matrix, but linalg.cholesky(a) returns a lower triangular matrix)

[V,D]=eig(a)

D,V = linalg.eig(a)

eigenvalues and eigenvectors of a

[V,D]=eig(a,b)

V,D = Sci.linalg.eig(a,b)

eigenvalues and eigenvectors of a,b

[V,D]=eigs(a,k)

find the k largest eigenvalues and eigenvectors of a

[Q,R,P]=qr(a,0)

Q,R = Sci.linalg.qr(a)

mat(...)

QR decomposition

[L,U,P]=lu(a)

L,U = Sci.linalg.lu(a) or 
LU,P=Sci.linalg.lu_factor(a)

mat(...)

LU decomposition (note: P(Matlab) == transpose(P(numpy)) )

conjgrad

Sci.linalg.cg

mat(...)

Conjugate gradients solver

fft(a)

fft(a)

mat(...)

Fourier transform of a

ifft(a)

ifft(a)

mat(...)

inverse Fourier transform of a

sort(a)

sort(a) or a.sort()

mat(...)

sort the matrix

[b,I] = sortrows(a,i)

I = argsort(a[:,i]), b=a[I,:]

sort the rows of the matrix

regress(y,X)

linalg.lstsq(X,y)

multilinear regression

decimate(x, q)

Sci.signal.resample(x, len(x)/q)

downsample with low-pass filtering

unique(a)

unique(a)

squeeze(a)

a.squeeze()

Notes

matlab numpy equivalents的更多相关文章

  1. 【搬运】NumPy_for_Matlab_Users

    搬运自:http://scipy.github.io/old-wiki/pages/NumPy_for_Matlab_Users.html. 1.Introduction MATLAB和NumPy/S ...

  2. ubantu16.04+mxnet +opencv+cuda8.0 环境搭建

    ubantu16.04+mxnet +opencv+cuda8.0 环境搭建 建议:环境搭建完成之后,不要更新系统(内核) 转载请注明出处: 微微苏荷 一 我的安装环境 系统:ubuntu16.04 ...

  3. MXNet设计笔记之:深度学习的编程模式比较

    市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到 ...

  4. tensorflow 从入门到摔掉肋骨 教程二

    构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集  定义初始化值 def load_dataset(): ...

  5. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  6. 分布式机器学习框架:MxNet

    MxNet官网: http://mxnet.readthedocs.io/en/latest/ 前言: caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想. ...

  7. 分布式机器学习框架:MxNet 前言

           原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...

  8. 分布式机器学习框架:CXXNet

    caffe是很优秀的dl平台.影响了后面很多相关框架.        cxxnet借鉴了很多caffe的思想.相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu ...

  9. matplotlib基本函数

    数据分析 matlab Numpy + scipy + pandas +matplotlib 数据计算 +科学应用+数据清洗+数据可视化 1 Numpy概述 1 基于c语言的python接口的数值算法 ...

随机推荐

  1. iOS block的使用

    明明知道block是一个很重要的知识点,很久不用就又忘了,这是在网上看到的一个例子.(晚上回去整理另外的一个) 在视图A上有一个按钮(用来在点击的时候推出视图b)和一个label(用来显示从b传回来的 ...

  2. js个人笔记

    一.删除元素 <!DOCTYPE html> <html> <head> <title>删除元素</title> </head> ...

  3. JS基本类型和引用类型的值

    JS中可以把变量分成两部分,基本类型和引用类型. 基本类型比较简单,包括:Undefined.Null.Boolean.Number和String,基本类型值就是简单的数据段:引用类型值可能由多个值构 ...

  4. a标签根据js返回值判断页面是否跳转

    a标签再跳转之前先判断是否符合条件,符合可以跳转,不符合不可以跳转. 自己遇到的问题是:在js方法中根据条件就return结果,但是不行. 原因是:在js方法中return后不会结束整个js方法(ac ...

  5. iscsiadm用法简介

    已知192.168.14.112节点,存在目标器 iqn.2015.06.cn.hrbyg.www.ygcs.c0a802b8:wzg,未设置CHAP,存在目标器 iqn.2015.06.cn.hrb ...

  6. Web前端新人笔记之CSS字体

    本章内容是阅读CSS权威指南的一个小积累和随笔.新人必看,老鸟也可查看并指出不足指出以便后人阅读更好地理解.O(∩_∩)O谢谢!!!设置字体属性时样式变的最常见的用途之一:不过,尽管字体选择很重要,但 ...

  7. jquery 在页面中按回车 响应 事件

    为了用户方便我们往往会在用户回车之后做一些事,比如登陆的时候,填完表单过后,我们习惯性的会直接按回车,当然要处理这个,jquery是很简单的,我们来看看怎么做吧. $(document).ready( ...

  8. JS 立即执行的函数表达式(function)写法

    1. 正确的写法 对于JavaScript 来说,括弧()里面不能包含语句,所以在这一点上,解析器在解析function关键字的时候,会将相应的代码解析成function表达式,而不是function ...

  9. perl命令批量替换文件内容

    转自:http://www.jbxue.com/article/12638.html 使用perl命令批量替换文件内容. 对linux下的文件内容进行替换,有时不用编写perl脚本,用perl命令就可 ...

  10. li样式不显示使用overflow:hidden导致Li前面点、圈等样式不见

    点评:用了overflow:hidden 会影响 list-style,即当ul 中的li 的overflow 为hidden的时候,list-style不起作用,不显示前面的点.圈等样式,在ul或l ...