2287: 【POJ Challenge】消失之物

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 254  Solved: 140
[Submit][Status]

Description

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

Source

题解:

刚开始看见题,这不是前缀后缀随便搞吗,然后开开心心写代码,到了输出的时候忽然发现这不是成了n*m*m的。。。。T_T

无奈看了题解。

背包变种,设n为物品数量,nums[i]为物品的重量,dp1[i][j] 为前i个物品放入容量为j的背包中的方案数目,那么显然有:
dp1[i][j] = sum{dp1[i-1][j-nums[i]]};
那么所有的物品放入容量为j的数目是dp1[n][j];
令dp2[i][j]为除去第i个物品,放入容量为j的背包中的方案数目:
dp2[i][j] = dp1[n][j] - dp2[i][j-nums[i]],表示从选择所有物品装的方案中,筛去包含i物品的方案数

看来我还没有掌握背包的精髓?

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 2000+5

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
int n,m,a[maxn],f[maxn],g[maxn]; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();m=read();
for1(i,n)a[i]=read();
f[]=;
for1(i,n)
for3(j,m,a[i])(f[j]+=f[j-a[i]])%=;
g[]=;
for1(i,n)
{
for1(j,m)g[j]=(f[j]-(j>=a[i]?g[j-a[i]]:)+)%;
for1(j,m)printf("%d",g[j]);
printf("\n");
} return ; }

BZOJ2287: 【POJ Challenge】消失之物的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  3. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  4. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  5. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  6. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

  9. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

随机推荐

  1. html + ashx 实现Ajax省市联动

    基本思路:1.了解数据库中省和市的表结构及关联主键 2.创建html页面及select标签 3.通过ajax向ashx(一般处理程序)发送后台请求完成联动效果 表结构: 这里,开始创建一个命为demo ...

  2. JavaScript之数据类型

    1. 种类 5种基本类型:Number.String.Null.Undefined.Boolean 1种对象类型:Object(Function.Array.Date) 特别注意:当把基本类型尝试以对 ...

  3. eclipse+PyDev 中报错"scrapy.spiders.Spider" ,可用"# @UndefinedVariable"压制.

    # -*- coding:utf-8 -*- ''' Created on 2015年10月22日 (1.1) 例子来源: http://scrapy-chs.readthedocs.org/zh_C ...

  4. UVA 10795 A Different Task(汉诺塔 递归))

    A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefl ...

  5. 多语言文本资源的访问(Windows:ini)

    目标 本文要讨论对于开发多语言界面程序所需要解决的一个问题,即文本资源组织及访问的方法. 本文主要以Windows平台下讨论具现并提供处理代码. Windows方案 Windows下界面开发,除Dir ...

  6. 【转】Nginx 服务器安装及配置文件详解

    1. 安装nginx 1.1 选择稳定版本 我们编译安装nginx来定制自己的模块,机器CentOS 6.2 x86_64.首先安装缺少的依赖包: # yum -y install gcc gcc-c ...

  7. jQuery siblings()用法与实例。

    jQuery 的遍历方法siblings() $("给定元素").siblings(".selected") 其作用是筛选给定的同胞同类元素(不包括给定元素本身 ...

  8. 苹果ios、ipad加密视频播放器使用教程

    操作流程 温馨提示 播放时,请务必保证播放设备联网(原因:用户名权限验证需要网络,播放后10秒即可关闭网络) a)     请在苹果商店下载并安装app播放器:DrmPlayer b)     选择已 ...

  9. ruby环境sass编译中文出现Syntax error: Invalid GBK character错误解决方法

    sass文件编译时候使用ruby环境,无论是界面化的koala工具还是命令行模式的都无法通过,真是令人烦恼. 容易出现中文注释时候无法编译通过,或者出现乱码,找了几天的解决方法终于解决了. 这个问题的 ...

  10. mysql可视化管理工具

    1.navicat for mysql 2.navicat premium 3.HeidiSQL 4.MySQLWorkbench