Description

根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
一句话题意:

Input

接下来T行,每行一个正整数p,代表你需要取模的值

Output

T行,每行一个正整数,为答案对p取模后的值

Sample Input

3
2
3
6

Sample Output

0
1
4

HINT

对于100%的数据,T<=1000,p<=10^7

Source

By PoPoQQQ

【分析】

其实我是来吐槽的。

先附上"官方"题解:

SB出题人被各种乱艹系列……

其实是某天脑洞比较大突然想算算这东西= = 然后就发现了这个好玩的性质= =

其实+∞个2看着吓人其实没啥可怕的= =

笑傻,比较好玩的性质?出题人连降幂大法都不知道...还比较好玩的性质.....降幂大法比这好多了吧...

不能更裸的降幂大法.....

 /*
宋代朱敦儒
《西江月·世事短如春梦》
世事短如春梦,人情薄似秋云。不须计较苦劳心。万事原来有命。
幸遇三杯酒好,况逢一朵花新。片时欢笑且相亲。明日阴晴未定。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#define LOCAL
const int MAXN = + ;
const long long MOD = ;
const double Pi = acos(-1.0);
long long G = ;//原根
const int MAXM = * + ;
using namespace std;
typedef long long ll;
int phi[MAXN], prime[MAXN]; void read(int &x){//读入优化
char ch;x = ;
int flag = ;
ch = getchar();
while (ch < '' || ch > '') {if (ch == '') flag = -; ch = getchar();}
while (ch >= '' && ch <= '') {x = x * + (ch - ''); ch = getchar();}
x *= flag;
} void prepare(){//预处理phi函数
memset(prime, , sizeof(prime));
for (int i = ; i <= ; i++){
if (!prime[i]){
prime[++prime[]] = i;
phi[i] = i - ;
//printf("%d\n", prime[prime[0]]);
}
for (int j = ; j <= prime[]; j++){
if ((long long)i * (long long)prime[j] > 10000000ll) break;
prime[i * prime[j]] = ;
if (i % prime[j] == ){
phi[i * prime[j]] = phi[i] * prime[j];
break;
}else{
phi[i * prime[j]] = phi[i] * (prime[j] - );
}
}
}
}
ll pow(ll a, ll b, ll c){
if (b == ) return % c;
if (b == ) return a % c;
ll tmp = pow(a, b / , c);
if (b % == ) return (tmp * tmp) % c;
else return (((tmp * tmp) % c) * (a % c)) % c;
}
ll work(ll n){
if (n == 1ll) return ;
return pow(2ll, ((ll)work((ll)phi[n]) + (ll)phi[n]), n);
} int main(){
int T; prepare();
scanf("%d", &T);
while (T--){
ll n;
scanf("%lld", &n);
printf("%lld\n", work(n));
}
return ;
}

【BZOJ3884】【降幂大法】上帝与集合的正确用法的更多相关文章

  1. 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)

    [BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...

  2. 【BZOJ3884】上帝与集合的正确用法 [欧拉定理]

    上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T ...

  3. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  4. 扩展欧拉定理【洛谷P4139】 上帝与集合的正确用法

    P4139 上帝与集合的正确用法 \(2^{2^{2^{\dots}}}\bmod p\) 卡最优解倒数第一祭. 带一下扩展欧拉定理就好了. code: #include <iostream&g ...

  5. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  6. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  7. BZOJ 3384 上帝与集合的正确用法

    上帝与集合的正确用法 [问题描述] [输入格式] 第一行一个T,接下来T行,每行一个正整数p,代表你需要取模的值. [输出格式] T行,每行一个正整数,为答案对p取模后的值. [样例输入] 3236 ...

  8. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  9. bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

    欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...

随机推荐

  1. vim 设置 swap file, 防止 同一个文件同时被多次打开,而且有恢复的功效

    在.vimrc里加入:   set swapfile   即可以使能swap file, swapfile的名字一般是      .filename.swp    (如     .doc.txt.sw ...

  2. 综合而强大的DATASNAP

    从DELPHI2009开始,DATASNAP技术上完全是全新的架构,多层架构不再基于微软的COM,摆脱COM就等于摆脱了WINDOWS的束缚. TCP/IP通信不再需要先开启scktsrvr.exe程 ...

  3. jQuery中get与eq的区别

    get与eq的区别 .eq() 减少匹配元素的集合,根据index索引值,精确指定索引对象. .get() 通过检索匹配jQuery对象得到对应的DOM元素. 同样是返回元素,那么eq与get有什么区 ...

  4. How to find configuration file MySQL uses?

    http://www.dbasquare.com/2012/04/01/how-to-find-mysql-configuration-file/ A customer called me today ...

  5. mysqld --debug-sync

    http://hedengcheng.com/?p=238https://dev.mysql.com/doc/internals/en/debug-sync-facility.html mysqld ...

  6. MYSQLD c++函数修饰名转换工具c++filt

    会话1: mysql> select now(); 会话2: [root@localhost ~]# stap -v -e 'probe process("/usr/local/mys ...

  7. 进程控制之wait3和wait4函数

    大多数UNIX系统实现提供了另外两个函数wait3和wait4.它们提供的功能比POSIX.1函数wait.waitpid和waitid所提供的功能要多一个,这与附加参数rusage有关.该参数要求内 ...

  8. [转] Spring - Java Based Configuration

    PS: Spring boot注解,Configuration是生成一个config对象,@Bean指定对应的函数返回的是Bean对象,相当于XML定义,ConfigurationProperties ...

  9. HDU1495(bfs)

    非常可乐 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  10. TCP/IP协议原理与应用笔记14:电路交换 和 分组交换

    1. 电路交换: (1)建立连接 (2)数据传输 (3)拆除连接 2. 分组交换 (1)数据报: 根据网络的特性,将数据报分成不同大小的部分,经过不同网路传递到相同的目的地.如下: 这里A--X  和 ...