FFT&NTT学习笔记
具体原理就不讲了qwq,毕竟证明我也不太懂
FFT(快速傅立叶变换)&NTT(快速数论变换)
FFT
//求多项式乘积
//要求多项式A和多项式B的积多项式C
//具体操作就是
//DFT(A),DFT(B)->暴力乘积->拉格朗日插值(即IDFT(C))->C
//其中DFT表示离散傅里叶变换
//通俗的来说就是用点值表示多项式
//使用神秘单位复数根将时间复杂度降至O(nlogn)
//ps:但是常数巨大
//pps:应用非常广泛,非常多题目都要fft or ntt优化,板子一定要背熟
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define pw(n) (1<<n)
using namespace std;
const double pi=acos(-);
struct complex{
double a,b;
complex(double _a=,double _b=){
a=_a;
b=_b;
}
friend complex operator +(complex x,complex y){return complex(x.a+y.a,x.b+y.b);}
friend complex operator -(complex x,complex y){return complex(x.a-y.a,x.b-y.b);}
friend complex operator *(complex x,complex y){return complex(x.a*y.a-x.b*y.b,x.a*y.b+x.b*y.a);}
friend complex operator *(complex x,double y){return complex(x.a*y,x.b*y);}
friend complex operator /(complex x,double y){return complex(x.a/y,x.b/y);}
}a[],b[];
int n,m,bit,bitnum=,rev[pw()];
void getrev(int l){//Reverse
for(int i=;i<pw(l);i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
}
void FFT(complex *s,int op){
for(int i=;i<bit;i++)if(i<rev[i])swap(s[i],s[rev[i]]);
for(int i=;i<bit;i<<=){
complex w(cos(pi/i),op*sin(pi/i));
for(int p=i<<,j=;j<bit;j+=p){//Butterfly
complex wk(,);
for(int k=j;k<i+j;k++,wk=wk*w){
complex x=s[k],y=wk*s[k+i];
s[k]=x+y;
s[k+i]=x-y;
}
}
}
if(op==-){
for(int i=;i<=bit;i++){
s[i]=s[i]/(double)bit;
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&a[i].a);
for(int i=;i<=m;i++)scanf("%lf",&b[i].a);
m+=n;
for(bit=;bit<=m;bit<<=)bitnum++;
getrev(bitnum);
FFT(a,);
FFT(b,);
for(int i=;i<=bit;i++)a[i]=a[i]*b[i];
FFT(a,-);
for(int i=;i<=m;i++)printf("%d ",(int)(a[i].a+0.5));
return ;
}
NTT
//费马数数论变换
//大家觉得998244353好还是1004535809好?^_^
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define pw(n) (1<<n)
using namespace std;
const int N=,P=,g=;//或P=1004535809
int n,m,bit,bitnum=,a[N+],b[N+],rev[N+];
void getrev(int l){
for(int i=;i<pw(l);i++){
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
}
}
int fastpow(int a,int b){
int ans=;
for(;b;b>>=,a=1LL*a*a%P){
if(b&)ans=1LL*ans*a%P;
}
return ans;
}
void NTT(int *s,int op){
for(int i=;i<bit;i++)if(i<rev[i])swap(s[i],s[rev[i]]);
for(int i=;i<bit;i<<=){
int w=fastpow(g,(P-)/(i<<));
for(int p=i<<,j=;j<bit;j+=p){
int wk=;
for(int k=j;k<i+j;k++,wk=1LL*wk*w%P){
int x=s[k],y=1LL*s[k+i]*wk%P;
s[k]=(x+y)%P;
s[k+i]=(x-y+P)%P;
}
}
}
if(op==-){
reverse(s+,s+bit);
int inv=fastpow(bit,P-);
for(int i=;i<bit;i++)a[i]=1LL*a[i]*inv%P;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&b[i]);
m+=n;
for(bit=;bit<=m;bit<<=)bitnum++;
getrev(bitnum);
NTT(a,);
NTT(b,);
for(int i=;i<bit;i++)a[i]=1LL*a[i]*b[i]%P;
NTT(a,-);
for(int i=m;i>=;i--)printf("%d ",a[i]);
return ;
}
FFT&NTT学习笔记的更多相关文章
- FFT/NTT 学习笔记
0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...
- FFT、NTT学习笔记
参考资料 picks miskcoo menci 胡小兔 unname 自为风月马前卒 上面是FFT的,学完了就来看NTT吧 原根 例题:luogu3803 fft优化后模板 #include < ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 快速傅里叶变换(FFT)学习笔记(未完待续)
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...
- NTT学习笔记
和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可. #include <bits/stdc++.h> using na ...
- NTT 学习笔记
引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...
随机推荐
- C#中方向键与回车键切换控件焦点
环境:界面上有TextBox,ComboBox等控件. 不建议把左右方向键都用来切换焦点,否则你在TextBox里面改变光标所在字符位置就不方便了. 方法一:笨方法,需为每个控件单独注册事件处理 以T ...
- ZBrush软件特性之Marker标记调控板
在ZBrush®中使用Marker标记调控板来记忆物体属性,因此能在任何时间回到标记并使用它给其他物体或改变物体作为参考点. ZBrush软件下载:http://pan.baidu.com/s/1sl ...
- 路飞学城Python-Day31
19-生产者消费者模型 生产者:生成数据的任务 消费者:处理数据的任务 在并发编程的过程中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理,才能继续生产数据:同样的,如果 ...
- jq——事件
http://www.w3school.com.cn/jquery/jquery_ajax_intro.asp $(document),$(body) 加载事件: $(document).ready( ...
- Android开发进度07
1,今日:目标:完成记账功能 2,昨天:账单的增删改查方法 3,收获:无 4,问题:SQLite表单出现问题,提交后软件直接退出
- Java基础学习总结(48)——Java 文档注释
Java只是三种注释方式.前两种分别是// 和/* */,第三种被称作说明注释,它以/** 开始,以 */结束. 说明注释允许你在程序中嵌入关于程序的信息.你可以使用javadoc工具软件来生成信息, ...
- PatentTips - Object-oriented processor architecture and operating method
BACKGROUND OF THE INVENTION The present invention relates to processors and computer systems. More s ...
- Spring Cloud Feign 出现ClassNotFoundException: feign.Feign$Builder错误
Spring Cloud Feign 出现ClassNotFoundException: feign.Feign$Builder错误 后来发现是POM文件写错了,修改为正确的pom,就可以了: POM ...
- JDBC创建mysql连接池代码
1.底层实现类(DBConnection) package JDBC.JDBCPool.MyJDBCPool; import java.sql.Connection; import java.sql. ...
- web程序定时器
package com.timer; import java.util.Calendar; import java.util.Date; import java.util.Timer; import ...