bzoj2287【POJ Challenge】消失之物(退背包)
2287: 【POJ Challenge】消失之物
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 657 Solved: 382
[Submit][Status][Discuss]
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
1 1 2
Sample Output
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
/*
设f[x]表示恰好装满x体积时的方案数(没有限制),可以用01背包算法求出。这是总方案数。
然后考虑不选某物品的情况。
设g[x]为不选当前物品恰好装满x体积时的方案数。
当x小于w[i]时,i物品一定不会被选上 g[i]=f[i]
当x大于等于w[i]时,i物品可能会被选上,直接求不选的情况比较困难。
可以换个思路,用总方案数-选的方案数得到不选的方案数。
总方案数及f[x],不选的方案数可以想为先不选i再最后把i选上,即g[x-w[i]]。
所以g[x]=f[x]-g[x-w[i]]。
最后输出g即可。
*/
#include<iostream>
#include<cstdio>
#include<cstring> #define N 2017 using namespace std;
int w[N],f[N],g[N];
int n,m; int main()
{
scanf("%d%d",&n,&m);f[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
for(int j=m;j>=w[i];j--) f[j]=(f[j]+f[j-w[i]])%;
}
for(int i=;i<=n;i++)
{
for(int j=;j<w[i];j++) g[j]=f[j];
for(int j=w[i];j<=m;j++) g[j]=(f[j]-g[j-w[i]]+)%;
for(int j=;j<=m;j++) printf("%d",g[j]);
printf("\n");
}
return ;
}
bzoj2287【POJ Challenge】消失之物(退背包)的更多相关文章
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- [bzoj2287]消失之物 题解(背包dp)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1138 Solved: 654[Submit][ ...
- 2018.11.06 bzoj2287: 【POJ Challenge】消失之物(背包)
传送门 先假设所有物品都能用,做01背包求出方案数. 然后枚举每个点,分类讨论扣掉它对答案的贡献. 代码: #include<bits/stdc++.h> using namespace ...
随机推荐
- 配置本地git服务器(gitblit win7)
title: 配置本地git服务器 date: 2017年3月7日22:43:14 gitblit(不用安装) 进入gitblit-1.8.0\data下,编辑gitblit.properties和d ...
- SQL查询性能优化
使用高效的查询 使用 EXISTS 代替 IN -- 查询A表中同时存在B表的数据 -- 慢 SELECT * FROM Class_A WHERE id IN (SELECT id FROM Cla ...
- chrome浏览器处理本地Ajax跨域
chrome浏览器下 项目开发过程中,用到了Ajax异步请求.若将项目放在本地服务器中,通过localhost访问文件,不会报错.若直接通过file://访问文件就会报错. 报错信息: XMLHttp ...
- C# MVC ajax上传 文件
用普通的ajax提交表单的时候,不能把文件流传到后端去,所以要用到jquery.form.js jquery.form.js到官网下载或者从这里下载:http://pan.baidu.com/s/1c ...
- CSS 选择器 知识点
<html> <head> <style type="text/css"> h1 > strong { /*子元素选择器 只选择自己 的子 ...
- Unittest加载执行用例的方法总结
前言 说到测试框架,unittest是我最先接触的自动化测试框架之一了, 而且也是用的时间最长的, unittest框架有很多方法加载用例,让我们针对不同的项目,不同项目的大小及用例的多少自己选择加载 ...
- [luogu3155 CQOI2009] 叶子的染色(树形dp)
传送门 Solution 十分简单的树形dpQwQ,转移关系:父亲染了儿子不用染 只需要确定根就是简单树形dp,而其实根可以随便取一个非叶子节点 可以分情况讨论发现答案并不会改变 Code //By ...
- Scrapy实战:使用IDE工具运行爬虫
一般我们运行爬虫程序都是使用命令行,比如:scrapy crwal sobook.不过这多少有些不方便,可以使用下面的方法使用IDE的方式运行爬虫 我这边使用的是pycharm软件,在pycharm里 ...
- Maven学习总结(7)——eclipse中使用Maven创建Web项目
Maven学习总结(七)--eclipse中使用Maven创建Web项目 一.创建Web项目 1.1 选择建立Maven Project 选择File -> New ->Project,如 ...
- Markdown 基本使用
My First Markdown 标签(空格分隔): 未分类 # Markdown 11种基本语法## 设置标题在此输入正文标题设置(让字体变大,和word的标题意思一样)在Markdown当中设置 ...