hiho1804 - 整数分解、组合数、乘法逆元
题目叙述很啰嗦,可以简化为:n个球[1-1e5],放到m个不同的桶里,一共多少种不同的放法。【桶里可以不放】
------------------------------------------------------------------------------------------------
解C(n+m-1, m-1)
由于m,n可能很大,所以需要用逆元。扩展欧几里得。
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
typedef long long LL;
using namespace std;
const int N = ;
LL MOD = 1e9 + ;
LL F[N], Inv[N]; LL exgcd(LL a, LL b, LL& x, LL& y){
if (b == ){
x = , y = ; return a;
}
else{
auto gcd = exgcd(b, a%b, y, x);
y -= (a / b) * x;
return gcd;
}
} int main(){
LL n, k; cin >> n >> k;
int left = n - k, last = MOD, seg = ;
n += MOD;
for (int i = ; i < left; ++i){
int val; scanf("%d", &val);
if (val>last){
last = val;
}
else{
++seg;
n -= last;
last = val;
}
} n -= last; if (n < ){
puts("No");
}
else{
F[] = ; for (int i = ; i < N; ++i){
F[i] = (i * F[i - ]) % MOD;
}
LL nouse; exgcd(F[N - ], MOD, Inv[N-], nouse);
while (Inv[N - ] < ) Inv[N - ] += MOD; for (int i = N - ; i; --i){
Inv[i] = (Inv[i + ] * (i + )) % MOD;
} std::cout << (F[n + seg - ] * Inv[n]) % MOD*Inv[seg - ] % MOD << std::endl;
//C(n+seg-1,seg-1);
}
}
hiho1804 - 整数分解、组合数、乘法逆元的更多相关文章
- hdu5698瞬间移动-(杨辉三角+组合数+乘法逆元)
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- (light oj 1102) Problem Makes Problem (组合数 + 乘法逆元)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, ...
- CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【数论】【组合数】【快速幂】【乘法逆元】洛谷 P2265 路边的水沟
从左上角到右下角,共经过n+m个节点,从其中选择n各节点向右(或者m各节点向下),所以答案就是C(n+m,n)或者C(n+m,m),组合数暴力算即可,但是要取模,所以用了乘法逆元. #include& ...
- 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
- 【模板】求1~n的整数的乘法逆元
洛谷3811 先用n!p-2求出n!的乘法逆元 因为有(i-1)!-1=i!-1*i (mod p),于是我们可以O(n)求出i!-1 再用i!-1*(i-1)!=i-1 (mod p)即是答案 #i ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
随机推荐
- PAT_A1076#Forwards on Weibo
Source: PAT A1076 Forwards on Weibo (30 分) Description: Weibo is known as the Chinese version of Twi ...
- UOJ #310 黎明前的巧克力 (FWT)
题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...
- HashMap源码分析笔记(一)
一.结构 HashMap的结构由数组和链表组成,可以说是一个链表类型的数组: 快速定位方式:key值得hash变换作为数组索引快速找到对应数组块,之后通过hash值对比从链表中查找到匹配项. hash ...
- Python语言简介
一.Python语言发展史 1989年吉多·范罗苏姆(Guido van Rossum)中文外号“龟叔”,圣诞节期间开始编写Python语言的编译器. Python这个名字,来自Guido所挚爱的电视 ...
- 搜索引擎seo优化
<a href="" title="SEO优化"></a> <img src="" alt="SEO ...
- POJ2116 Death to Binary?
/* POJ2116 Death to Binary? http://poj.org/problem?id=2116 齐肯多夫定理 */ #include <cstdio> #includ ...
- Set Time, Date Timezone in Linux from Command Line or Gnome | Use ntp
https://www.garron.me/en/linux/set-time-date-timezone-ntp-linux-shell-gnome-command-line.html Set ti ...
- DJANGO之自定义模板过滤器
我查找了DJANGO模板的过滤器,好像指定字符串包含指定关-键字符的过滤器没有呢, 没有硬着头-皮,按网上其它人的作法,写了一个,成功了...:) 参考URL: http://liuzhijun.it ...
- 64位win7中使用vs2013为python3.4安装pycrypto-2.6.1插件报Unable to find vcvarsall.bat异常解决方式
问题描写叙述: 64位win7中使用vs2013为python3.4.2安装pycrypto-2.6.1插件报Unable to find vcvarsall.bat. 问题分析: 1.源代码分析,查 ...
- BAT常问问题总结以及回答(数据库篇)
数据库 事务四大特性(ACID)原子性.一致性.隔离性.持久性 事务:所谓事务,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位.begin transaction 原 ...