真是道好题啊,当时怎么想都没想出来。。。

传送门

简述题意:

有n个点,每个点有一个权值Ai,连接i,j两个点的代价是 |ijD+Ai+A

其中D是给定的常数,问把n个点联通的最小代价

  • 1≤N≤2×$10^{5}$
  • 1≤D≤$10^{9}$
  • 1≤Ai≤$10^{9}$

上来就有个简单粗暴的生成树做法,不过边的数量太多了,肯定做不了。。。

我们需要减少待选边的数量,这里题解给了两种做法,分别体会下吧?

分治

通过分治,将问题变小,如果每个点都向分界线另一边连有边的话,分治下来总边数是nlogn的

再进一步考虑分治的特性,在分治过程中总能抵消掉元素的大小关系,在这里自然选择点的标号

这样左边的点对一条边的贡献设为$f(i)=A_{i}-i*D$

对应的右边是$g(j)=A_{j}+j*D$

这样一条边$(i,j)$就是$f(i)+g(j)$,我们找到左边最小的$f(i_{0})$,右边最小$g(j_{0})$,这样一个左边的点一定连向$j_{0}$,右边的连向$i_{0}$

如何证明这样一定可以连通呢?

按照上面的算法,一条$i!=i_{0}$且$j!=j_{0}$的边不被选,而这时候,有三条边会代替这条边被选$(i,j_{0}),(i_{0},j),(i_{0},j_{0})$(他们都比原边小)

你会发现这三条边会优先于$(i,j)$考虑的话,在生成树算法中就可以保证i,j两点联通

进而对于每个跨过中线的点对都联通了,完成了分治的目的

跑完生成树就是一个$O(Nlog^{2}N)$

关于$A_{i}$

将A数组按顺序放好了之后我们假设A两两不同,这里的左右指标号大小

对于x,我们默认考虑A比他小的边,我们可以证明以下两个结论:

  • 在x左侧所有A比他小的点中,我们只需考虑边权最小的那个
  • 在x右侧所有A比他小的点中,我们只需考虑边权最小的那个

我们先来证第一条。若左侧A比他小的点中最小的边是$(x,y)$,

那么对于每个满足$z<x$且$A_{z}<A_{x}$的z来说,

当$z<y$时,因为$A_{x}+xD>A_{y}+yD$,所以$(x,z)>(y,z)$

当$y<z$时,由$(x,y)<(x,z)$可知有$A_{y}-yD<A_{z}-zD\rightarrow A_{y}-A_{z}-yD+zD<0\rightarrow A_{y}+A_{z}+zD-yD<2A_{z}<A_{z}+A_{x}+xD-zD$

所以$(x,z)>(y,z)$

因此得出对于$(x,z)$有都比他小的两条边$(x,y)$和$(y,z)$代替

所以$(x,z)$并不会作为候选边,第二条的证明是类似的

若有A相等,其实并不会影响太多,比他小的条件改成小于等于也可,

实际上的做法要对A排序,再配合树状数组就可以处理了

这样的话,总边数是的$O(N)$,总复杂度是$O(NlogN)$

atcoder.keyence2019.contest E-Connecting Cities的更多相关文章

  1. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  2. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  3. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  4. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  5. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  6. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

  7. AtCoder Grand Contest 009

    AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...

  8. AtCoder Grand Contest 008

    AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...

  9. AtCoder Grand Contest 007

    AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...

随机推荐

  1. js中call()和apply()的区别

    · 它们的共同之处: 都“可以用来代替另一个对象调用一个方法,将一个函数的对象上下文从初始的上下文改变为由 thisObj 指定的新对象.” · 它们的不同之处: apply: 最多只能有两个参数—— ...

  2. wait-notify模型面试题

    一道面试题: 启动两个线程, 一个输出 1,3,5,7-99, 另一个输出 2,4,6,8-100 最后 STDOUT 中按序输出 1,2,3,4,5-100 错误实现1: public class ...

  3. C++操作Json字符串

    一.从字符串中读取JSON a.cpp ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ...

  4. the solution of CountNonDivisible by Codility

    question:https://codility.com/programmers/lessons/9 To solve this question , I get each element's di ...

  5. HDU5567/BestCoder Round #63 (div.2) A sequence1 水

    sequence1  Given an array a with length n, could you tell me how many pairs (i,j) ( i < j ) for a ...

  6. 创造HTTPS的是个神

    HTTP 是一个明文传输的协议,很多网络监听工具都可以轻易窃取网络中传输的用户信息,如密码,信用卡, 直到后来发明HTTPS, 世界一下子安静了 Why HTTPS? HTTPS可以保证用户提交的信息 ...

  7. oc55--ARC单个对象的内存管理

    // Person.h #import <Foundation/Foundation.h> @interface Person : NSObject @end // Person.m #i ...

  8. 如何注释ascx中的代码

    https://forums.asp.net/t/1783252.aspx?Commented+out+ascx+code+not+treated+as+commented+out+ <%--  ...

  9. nested exception is java.lang.NoClassDefFoundError: net/sf/cglib/proxy/CallbackFilter

    转自:https://blog.csdn.net/licheng989/article/details/28929411 在Bean中有代码 public abstract Axe getAxe(); ...

  10. var的变量提升的底层原理是什么?

    原理:JS引擎的工作方式是①先解析代码,获取所有被声明的变量:②然后在运行.也就是专业来说是分为预处理和执行两个阶段. 变量提升的定义:所有变量的声明语句都会被提升到代码头部,这就是变量提升. 例如: ...