传送门

Description

"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺

术细胞。普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树

个数。更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快

速算出其生成树个数。小W不知道计算姬算的对不对,你能帮助他吗?

Input

仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}

1 <= n,m,p <= 10^18

Output

仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。

Sample Input

2 3 7

Sample Output

5

Solution

答案为 \(n^{m-1}+m^{n-1}\)

这个可用矩阵树定理证出具体参考:

https://blog.csdn.net/WerKeyTom_FTD/article/details/60766200

Code

直接快速幂会爆long long

//By Menteur_Hxy
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; LL read() {
LL x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} LL n,m,MOD; LL mul(LL a,LL b) {
LL t=0; if(a<b) swap(a,b);
while(b) {
if(b&1) t=(t+a)%MOD;
a=(a+a)%MOD; b>>=1;
}
return t;
} LL qpow(LL a,LL b) {
LL t=1; a%=MOD;
while(b) {
if(b&1) t=mul(t,a);
a=mul(a,a); b>>=1;
}
return t;
} int main() {
n=read(),m=read(),MOD=read();
printf("%lld",mul(qpow(n,m-1),qpow(m,n-1))%MOD);
return 0;
}

[bzoj4766] 文艺计算姬 (矩阵树定理+二分图)的更多相关文章

  1. BZOJ4766:文艺计算姬(矩阵树定理)

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...

  2. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  3. bzoj 4766: 文艺计算姬 矩阵树定理

    题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...

  4. bzoj4766 文艺计算姬

    Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...

  5. BZOJ4766: 文艺计算姬(Prufer序列)

    题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个 ...

  6. Bzoj4766: 文艺计算姬(Matrix-tree/prufer)

    BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...

  7. [bzoj4766]文艺计算姬——完全二分图生成树个数

    Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = ...

  8. 【BZOJ】4766: 文艺计算姬

    [题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...

  9. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

随机推荐

  1. Xsolla与蜗牛一起共创黑金

    Xsolla和蜗牛游戏强强合作,公布了黑金在线,是中国知名网络游戏武术时代的一个新项目. Xsolla与蜗牛黑金 2014年6月10日至20日,蜗牛的黑金在线首次在美国洛杉矶E3展会上亮相. 该游戏官 ...

  2. 卸载了 TortoiseGit,问题太多

    电脑里面同一时候安装TortoiseGit 和 TortoiseSVN,使用tortoiseGIT来跟踪git项目,有一个非常无语的问题,git status显示都是clean的.可是目录图标却始终显 ...

  3. HDU5567/BestCoder Round #63 (div.2) A sequence1 水

    sequence1  Given an array a with length n, could you tell me how many pairs (i,j) ( i < j ) for a ...

  4. Recommended Settings for Tracing and Message Logging

    https://docs.microsoft.com/en-us/dotnet/framework/wcf/diagnostics/tracing/recommended-settings-for-t ...

  5. C# winform listBox中的项上下移动(转)

    C# winform listBox中的项上下移动 分类: C# winform2009-06-24 12:37 876人阅读 评论(0) 收藏 举报 winformc#object //上移节点   ...

  6. Privoxy shadowscocks代理

    ubuntu已经启动好了sock5的代理, 代理为: 127.0.0.1:1080. #使用Privoxy将sock5代理映射为http代理. 安装Privoxy sudo apt-get updat ...

  7. constraint和index--转载

    primary key和unique约束是要依赖index的,下面通过试验来看看他们之间的依赖关系!       SQL> select * from tt;   ID NA --------- ...

  8. WPF:通过Window.DataContext实现窗口间传值

    通过Window.DataContext实现窗口之间的传值,特别是跨窗口控件的联动,具有无可比拟的优势.实现方法如下: 1.  MainWindow.xaml,在Window.DataContext中 ...

  9. succ

  10. D - Vanya and Fence

    Problem description Vanya and his friends are walking along the fence of height h and they do not wa ...