题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。

修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。

政府审批的规则如下:

(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;

(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

(3)其他情况的申请一律同意。

一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。

当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。

你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

第一行一个整数n,表示城市的数量。(n≤5000)

以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

输出格式:

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

输入输出样例

输入样例#1: 复制

4

0 0

1 2

-1 2

0 4

输出样例#1: 复制

6.47

code:

#include<cstdio>
#include<cmath>
using namespace std;
int n,cnt;
double sum;
int mst[5005];
double dis[5005][5005],mincost[5005]; struct point{
int x,y;
}city[5005]; double qdis(int a,int b){
// if(dis[a][b]) return dis[a][b];
// else
// return dis[a][b]=dis[b][a]=sqrt(abs(city[a].x-city[b].x)*abs(city[a].x-city[b].x)+abs(city[a].y-city[b].y)*abs(city[a].y-city[b].y));
return sqrt(abs(city[a].x-city[b].x)*abs(city[a].x-city[b].x)+abs(city[a].y-city[b].y)*abs(city[a].y-city[b].y));
} void prim(int t){
if(cnt==n-1) return ;
cnt++;
int k; double minn=0x3f3f3f3f;
for(register int i=1;i<=n;i++) {
if(!mst[i]&&mincost[i]<minn){
minn=mincost[i];
k=i;
}
}
mst[k]=1;
for(register int i=1;i<=n;i++)
if(!mst[i]&&qdis(i,k)<mincost[i])
mincost[i]=qdis(i,k);
sum+=minn;
prim(k);
return ;
} int main(){
scanf("%d",&n);
for(register int i=1;i<=n;i++)
scanf("%d %d",&city[i].x,&city[i].y);
for(register int i=2;i<=n;i++) mincost[i]=qdis(i,1);
mst[1]=1;
prim(1);
printf("%.2f",sum);
return 0;
}

P1265 公路修建 (prim)的更多相关文章

  1. 洛谷P1265 公路修建——prim

    给一手链接 https://www.luogu.com.cn/problem/P1265 这道题本质上就是最小生成树,题目描述就是prim的思想 TIP:注意稠密图和稀疏图的区别 #include&l ...

  2. 洛谷P1265 公路修建

    P1265 公路修建 177通过 600提交 题目提供者该用户不存在 标签图论 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 long long类型赋值-1为什么… p党80的进 为什么不过 ...

  3. 洛谷——P1265 公路修建

    P1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一 ...

  4. 洛谷P1265 公路修建(Prim)

    To 洛谷.1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完 ...

  5. P1265 公路修建 最小生成树

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...

  6. 洛谷P1265 公路修建题解

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...

  7. P1265 公路修建 洛谷

    https://www.luogu.org/problem/show?pid=1265 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公 ...

  8. 洛谷 [P1265] 公路修建

    本题的描述:城市联盟,最短距离.. 使人想到了prim求MST,再一看数据范围:完全图!,那么一定得用prim,因为只有5000个点,所以不加优化的prim就能过. #include <iost ...

  9. Luogu P1265 公路修建

    一眼看去,就是一道MST的模板题. 然后果断准备跑Kruskal,然后5个TLE. Kruskal复杂度对于这个完全图要O(n^2*logn^2),快排就会导致超时. 然后打了刚学的Prim.朴素O( ...

随机推荐

  1. 修改oracle客户端的字符集

    客户端字符集环境select * from nls_instance_parameters,其来源于v$parameter, 表示客户端的字符集的设置,可能是参数文件,环境变量或者是注册表 方法有 : ...

  2. MySQL 5.7并行复制时代

    众所周知,MySQL的复制延迟是一直被诟病的问题之一,然而在Inside君之前的两篇博客中(1,2)中都已经提到了MySQL 5.7版本已经支持“真正”的并行复制功能,官方称为为enhanced mu ...

  3. POJ 1966

    求的是无向图的点连通度.开始便想到网络流,既然选的是点,当然就要拆点加边了.但无论如何也不敢往枚举源汇点的方向想,因为网络流复习度很高.看看网上大牛的,都是枚举,再看数据,原来N才50个点,枚举无压力 ...

  4. Google Style Guides-Shell Style Guide

    作者声明 这篇翻译文章对我来说是有点小挑战的.由于我英语实在非常烂,勉强能够看懂一些技术文档,能够猜出大概的含义.可是翻译对我来说算是一个挑战,看英文文档已经不是一天两天的事了,可是这个篇文章却是我的 ...

  5. 64位win7中使用vs2013为python3.4安装pycrypto-2.6.1插件报Unable to find vcvarsall.bat异常解决方式

    问题描写叙述: 64位win7中使用vs2013为python3.4.2安装pycrypto-2.6.1插件报Unable to find vcvarsall.bat. 问题分析: 1.源代码分析,查 ...

  6. 2014年辛星解读css第六节

    这一节我们就要讲到布局了,事实上布局本身特别简单.可是要合理的布好局就不那么简单了,就像我们写文章一样.写一篇文章非常easy,可是要写一篇名著就非常难了,这须要我们扎实的功底和对文学的理解,可是.千 ...

  7. 使用 AFNetworking的时候,怎样管理 session ID

    问: As the title implies, I am using AFNetworking in an iOS project in which the application talks to ...

  8. 安卓欢迎界面和activity之间的跳转问题

    使用安卓的UI界面,就不得不了解activity,由于actvity就像是一个form表单一样,全部的UI都呈如今这里,他能够承载全部的UI控件. INtent就是一个中继站一样.他负责组件之间的沟通 ...

  9. UVA - 10061 How many zero&#39;s and how many digits ?

    n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...

  10. 关于android中线程,进程,组件,app的理解

    android系统是一座房子.有一个正常执行的公司进驻这所座子 cpu是这家公司的老板 进程是公司中的办公室,办公室不干活 线程是办公室中的员工,干活的永远是员工 一间办公室中可有多个员工,而且办公室 ...