题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。

修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。

政府审批的规则如下:

(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;

(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

(3)其他情况的申请一律同意。

一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。

当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。

你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

第一行一个整数n,表示城市的数量。(n≤5000)

以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

输出格式:

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

输入输出样例

输入样例#1: 复制

4

0 0

1 2

-1 2

0 4

输出样例#1: 复制

6.47

code:

#include<cstdio>
#include<cmath>
using namespace std;
int n,cnt;
double sum;
int mst[5005];
double dis[5005][5005],mincost[5005]; struct point{
int x,y;
}city[5005]; double qdis(int a,int b){
// if(dis[a][b]) return dis[a][b];
// else
// return dis[a][b]=dis[b][a]=sqrt(abs(city[a].x-city[b].x)*abs(city[a].x-city[b].x)+abs(city[a].y-city[b].y)*abs(city[a].y-city[b].y));
return sqrt(abs(city[a].x-city[b].x)*abs(city[a].x-city[b].x)+abs(city[a].y-city[b].y)*abs(city[a].y-city[b].y));
} void prim(int t){
if(cnt==n-1) return ;
cnt++;
int k; double minn=0x3f3f3f3f;
for(register int i=1;i<=n;i++) {
if(!mst[i]&&mincost[i]<minn){
minn=mincost[i];
k=i;
}
}
mst[k]=1;
for(register int i=1;i<=n;i++)
if(!mst[i]&&qdis(i,k)<mincost[i])
mincost[i]=qdis(i,k);
sum+=minn;
prim(k);
return ;
} int main(){
scanf("%d",&n);
for(register int i=1;i<=n;i++)
scanf("%d %d",&city[i].x,&city[i].y);
for(register int i=2;i<=n;i++) mincost[i]=qdis(i,1);
mst[1]=1;
prim(1);
printf("%.2f",sum);
return 0;
}

P1265 公路修建 (prim)的更多相关文章

  1. 洛谷P1265 公路修建——prim

    给一手链接 https://www.luogu.com.cn/problem/P1265 这道题本质上就是最小生成树,题目描述就是prim的思想 TIP:注意稠密图和稀疏图的区别 #include&l ...

  2. 洛谷P1265 公路修建

    P1265 公路修建 177通过 600提交 题目提供者该用户不存在 标签图论 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 long long类型赋值-1为什么… p党80的进 为什么不过 ...

  3. 洛谷——P1265 公路修建

    P1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一 ...

  4. 洛谷P1265 公路修建(Prim)

    To 洛谷.1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完 ...

  5. P1265 公路修建 最小生成树

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...

  6. 洛谷P1265 公路修建题解

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...

  7. P1265 公路修建 洛谷

    https://www.luogu.org/problem/show?pid=1265 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公 ...

  8. 洛谷 [P1265] 公路修建

    本题的描述:城市联盟,最短距离.. 使人想到了prim求MST,再一看数据范围:完全图!,那么一定得用prim,因为只有5000个点,所以不加优化的prim就能过. #include <iost ...

  9. Luogu P1265 公路修建

    一眼看去,就是一道MST的模板题. 然后果断准备跑Kruskal,然后5个TLE. Kruskal复杂度对于这个完全图要O(n^2*logn^2),快排就会导致超时. 然后打了刚学的Prim.朴素O( ...

随机推荐

  1. MySQL Workbench出现:Error Code: 2013. Lost connection to MySQL server during query的问题解决

    解决办法: [Edit]->[Preference]->[SQL Editor] 将下图DBMS connection read time out (in seconds)适当调大: 参考 ...

  2. Eclipse在Project Explorer项目归组及分模块显示

    普通项目: 1.[Package Explorer]->[filter]->[Top Level Elements]->[Working Sets] 2.[Package Explo ...

  3. HDU-4451-Dressing (2012年金华赛区J题)

    Dressing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  4. POJ 2002 Squares【值得摸索的一道二分+点旋转】

    id=2002">Squares 很好的一道二分,事实上本来我是没有思路的,看了基神的题解之后才似乎明确了点. 题意:给出最多有1000个点,问这些点能够组成多少个正方形 分析:先想想 ...

  5. Ubuntu安装及ubuntu系统使用菜岛教程

    Ubuntu是一款广受欢迎的开源Linux发行版,和其他Linux操作系统相比,Ubuntu非常易用,和Windows相容性很好,非常适合Windows用户的迁移,在其八年的成长过程中已经获得了两千多 ...

  6. Sublime Text 2 界面主题 推荐 Flatland

    先搜索下THEME-FLATLAND 安装完后在preferences中选择settings-usr { "color_scheme": "Packages/Theme ...

  7. Nginx配置指令location匹配符优先级和安全问题

    使用nginx 很久了,它的性能高,稳定性表现也很好,得到了很多人的认可.特别是它的配置,有点像写程序一样,每行命令结尾一个";"号,语句块用"{}"括起来. ...

  8. [Javascript] 5个最佳的Javascript日期处理类库

    在大家日常网站开发和web应用开发中,我们往往需要有效的调用Javascript处理日期和时间格式相关的函数,在Javascript中已经包含了部分最基本的内建处理方法. 在大家日常网站开发和web应 ...

  9. new一个接口

    首先我们先看看接口的定义: 接口(英文:Interface),在JAVA编程语言中是一个抽象类型,是抽象方法的集合,接口通常以interface来声明.一个类通过继承接口的方式,从而来继承接口的抽象方 ...

  10. 框架,表格,表单元素,css基础以及基本标签的结合

    <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8&quo ...