P4514 上帝造题的七分钟

题目背景

裸体就意味着身体。

题目描述

“第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵。

第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作。

第三分钟,k说,要能查询,于是便有了求给定矩形区域内的全部数字和的操作。

第四分钟,彩虹喵说,要基于二叉树的数据结构,于是便有了数据范围。

第五分钟,和雪说,要有耐心,于是便有了时间限制。

第六分钟,吃钢琴男说,要省点事,于是便有了保证运算过程中及最终结果均不超过32位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”

——《上帝造裸题的七分钟》

所以这个神圣的任务就交给你了。

输入输出格式

输入格式:

输入数据的第一行为X n m,代表矩阵大小为n×m。

从输入数据的第二行开始到文件尾的每一行会出现以下两种操作:

  • L a b c d delta —— 代表将(a,b),(c,d)为顶点的矩形区域内的所有数字加上delta。
  • k a b c d —— 代表求(a,b),(c,d)为顶点的矩形区域内所有数字的和。

请注意,k为小写。

输出格式:

针对每个k操作,在单独的一行输出答案。

输入输出样例

输入样例#1: 复制

X 4 4

L 1 1 3 3 2

L 2 2 4 4 1

k 2 2 3 3

输出样例#1: 复制

12

说明

对于10%的数据,1 ≤ n ≤ 16, 1 ≤ m ≤ 16, 操作不超过200个.

对于60%的数据,1 ≤ n ≤ 512, 1 ≤ m ≤ 512.

对于100%的数据,1 ≤ n ≤ 2048, 1 ≤ m ≤ 2048, -500 ≤ delta ≤ 500,操作不超过200000个,保证运算过程中及最终结果均不超过32位带符号整数类型的表示范围。

by XLk

题解

想写二维线段树。

然而讨论里说卡掉了空间了。

那就硬着头皮写二维树状数组吧。

二维树状数组教做人系列。

对于一维的树状数组,我们知道区间加和区间求和是需要差分并维护两个树状数组的。(不会的可以去用树状数组写一下x谷的线段树模板1)

这个对于二维树状数组同样适用。

那么我们假设\(sum[i][j]\)为差分数组。

\(sum[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1]\)。

为什么要这么假设呢?

因为这样我们可以发现

对于点\((x,y)\)的值就是

\(\sum_{i=1}^x\sum_{j=1}^y\sum_{h=1}^i\sum_{k=1}^j sum[h][k]\)

根据每一次的求值,我们发现以\((x,y)\)为结尾的矩阵,每个差分数组出现的次数为

\(\sum_{i=1}^x\sum_{j=1}^y sum[i][j]*(x-i+1)*(y-j+1)\)

是不是会发现开始变得和一维树状数组求法一样了。

接下来让我们把这个公式拆开食用。

\(\sum_{i=1}^x\sum_{j=1}^y sum[i][j]*(xy+x+y+1)-sum[i][j]*i(y+1)-sum[i][j]*j(x+1)+sum[i][j]*i*j\)

发现只要维护\(sum[i][j],sum[i][j]*i,sum[i][j]*j,sum[i][j]*i*j\)四个树状数组了。

好现在考虑加值。给\((2,2),(3,3)\)的矩阵加上值。

在差分数组里面就是这样的

0 0 0 0 0
0 + 0 - 0
0 0 0 0 0
0 - 0 + 0

就等于正常数组里面的

0 0 0 0 0
0 + + 0 0
0 + + 0 0
0 0 0 0 0

即在给\((x_1,y_1),(x_2,y_2)\)加值时。我们需要给\((x_1,y_1),(x_2+1,y_2+1)\)加,\((x_1,y_2+1),(x_2+1,y_1)\)减。

因为统计数组时,点\((i,j)\)的值为以\((i,j)\)为右下角,\((1,1)\)为左上角的差分矩阵的和。

题解

#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} struct node{
int t[2050][2050];
void add(int x,int y,int v){
for(int i=x;i<=n;i+=(i&(-i)))
for(int j=y;j<=m;j+=(j&(-j)))
t[i][j]+=v;
}
int query(int x,int y){
int sum=0;
for(int i=x;i;i-=(i&(-i)))
for(int j=y;j;j-=(j&(-j)))
sum+=t[i][j];
return sum;
}
}Q,Qi,Qj,Qij; void add(int x,int y,int v){
Q.add(x,y,v);Qi.add(x,y,v*x);
Qj.add(x,y,v*y);Qij.add(x,y,v*x*y);
} int query(int x,int y){
return Q.query(x,y)*(x*y+x+y+1)-Qi.query(x,y)*(y+1)-Qj.query(x,y)*(x+1)+Qij.query(x,y);
} int main(){
n=read();m=read();
char opt[10];
while(scanf("%s",opt)==1){
int xa=read(),ya=read(),xb=read(),yb=read();
if(opt[0]=='L'){
int v=read();
add(xa,ya,v);add(xb+1,ya,-v);
add(xb+1,yb+1,v);add(xa,yb+1,-v);
}
else {
printf("%d\n",query(xb,yb)-query(xb,ya-1)-query(xa-1,yb)+query(xa-1,ya-1));
}
}
return 0;
}

[luogu] P4514 上帝造题的七分钟 (树状数组,二维差分)的更多相关文章

  1. BZOJ 3132(上帝造题的七分钟-树状数组求和+2D逆求和数组)

    3132: 上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 46  Solved: 18[Submit][Status][Discus ...

  2. 【BZOJ3132】上帝造题的七分钟 [树状数组]

    上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description “第一分钟,X说,要有矩阵 ...

  3. BZOJ 3132: 上帝造题的七分钟 树状数组+差分

    这个思路很巧妙啊 ~ code: #include <cstdio> #include <algorithm> #define N 2050 #define ll int #d ...

  4. bzoj 4822: [Cqoi2017]老C的任务【扫描线+树状数组+二维差分】

    一个树状数组能解决的问题分要用树套树--还写错了我别是个傻子吧? 这种题还是挺多的,大概就是把每个矩形询问差分拆成四个点前缀和相加的形式(x1-1,y1-1,1)(x2.y2,1)(x1-1,y2,- ...

  5. P4514 上帝造题的七分钟——二维树状数组

    P4514 上帝造题的七分钟 求的是矩阵里所有数的和: 维护四个树状数组: #include<cstdio> #include<cstring> #include<alg ...

  6. P4514 上帝造题的七分钟(二维树状数组)

    P4514 上帝造题的七分钟 二维树状数组 差分维护区间加法,区间求和 #include<cstdio> int read(){ ,f=; ') f=f&&(c!='-') ...

  7. P4514 上帝造题的七分钟

    P4514 上帝造题的七分钟 题意: 二维区间修改 区间查询 --- 错误日志: 写了个 4 重循环忘记调用 \(i\) Solution 二维树状数组 巨尼玛毒瘤 听说二维线段树会 \(MLE\) ...

  8. 洛谷 P4514 上帝造题的七分钟 解题报告

    P4514 上帝造题的七分钟 题目背景 裸体(裸题)就意味着身体(神题). 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了\(0\)的\(n \times m\)矩阵. 第二 ...

  9. 洛谷P4514 上帝造题的七分钟

    P4514 上帝造题的七分钟 题目背景 裸体就意味着身体. 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了000的n×mn×mn×m矩阵. 第二分钟,L说,要能修改,于是便有 ...

随机推荐

  1. vue登录

    <template> <section class="wrap-page wrap-page-u" style="padding-top:2rem;&q ...

  2. BZOJ 5020 [THUWC2017]Drown in the math ocean (LCT+求导)

    题目大意: 太长了略 洛谷题面传送门 嗯,数学题 感觉考试要是出这种题我就死翘翘了[逃 不用想都知道要$LCT$维护断边连边,但询问该如何处理呢 利用题目给出的公式 $f(x)=\sum_{i=0}^ ...

  3. BZOJ 2118 墨墨的等式 (同余最短路)

    题目大意:已知B的范围,求a1x1+a2x2+...+anxn==B存在非负正整数解的B的数量,N<=12,ai<=1e5,B<=1e12 同余最短路裸题 思想大概是这样的,我们选定 ...

  4. shell试题

    1.按单词出现频率降序排序! 2.按字母出现频率降序排序! The months of learning in Old Boy education are the few months that I ...

  5. linux下wps的字体缺失解决方法

    可以参考Mr.Liang 说明:当安装好wps for linux,然后打开wps会提示字体缺失,可做如下操作: 1.下载wps缺失字体(资源侵权联系我删除) 2.解压 unzip -d ./wps_ ...

  6. vue无缝滚动的插件开发填坑分享

    写插件的初衷 1.项目经常需要无缝滚动效果,当时写jq的时候用用msClass这个老插件,相对不上很好用. 2.后来转向vue在vue-awesome没有找到好的无缝滚动插件,除了配置swiper可以 ...

  7. S3C6410 LCD Overlay Test Program

    测试了一下S3C6410 LCD控制器提供的Overlay功能,写了一个简单的test,主要用于实现FB0和FB1之间的Overlay操作.内核选项的Windows至少要为2. 具体支持如下操作:1 ...

  8. 洛谷 P1313 计算系数 (二项式定理)

    这道题正好复习了二项式定理 所以答案就是a^n * b^m * c(n, k) 然后注意一些细节 我一开始写组合数只写一行的组合数 即c[0] = 1; c[i] = c[i-1] * (n - i ...

  9. C# 实现窗口程序winform像QQ一样靠近桌面边缘自动隐藏窗口

    实现原理: 实现这个功能的原理步骤如下: 1.判断窗体程序是否靠近桌面边缘: 2.获取桌面屏幕大小与窗体程序大小: 3.把窗体程序显示在桌面以外隐藏起来,预留部分窗体方便用户拉出程序: 4.判断鼠标是 ...

  10. 【转】 C#获取当前程序运行路径的方法集合

    [转] C#获取当前程序运行路径的方法集合 //获取当前进程的完整路径,包含文件名(进程名). string str = this.GetType().Assembly.Location; resul ...