P4514 上帝造题的七分钟

题目背景

裸体就意味着身体。

题目描述

“第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵。

第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作。

第三分钟,k说,要能查询,于是便有了求给定矩形区域内的全部数字和的操作。

第四分钟,彩虹喵说,要基于二叉树的数据结构,于是便有了数据范围。

第五分钟,和雪说,要有耐心,于是便有了时间限制。

第六分钟,吃钢琴男说,要省点事,于是便有了保证运算过程中及最终结果均不超过32位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”

——《上帝造裸题的七分钟》

所以这个神圣的任务就交给你了。

输入输出格式

输入格式:

输入数据的第一行为X n m,代表矩阵大小为n×m。

从输入数据的第二行开始到文件尾的每一行会出现以下两种操作:

  • L a b c d delta —— 代表将(a,b),(c,d)为顶点的矩形区域内的所有数字加上delta。
  • k a b c d —— 代表求(a,b),(c,d)为顶点的矩形区域内所有数字的和。

请注意,k为小写。

输出格式:

针对每个k操作,在单独的一行输出答案。

输入输出样例

输入样例#1: 复制

X 4 4

L 1 1 3 3 2

L 2 2 4 4 1

k 2 2 3 3

输出样例#1: 复制

12

说明

对于10%的数据,1 ≤ n ≤ 16, 1 ≤ m ≤ 16, 操作不超过200个.

对于60%的数据,1 ≤ n ≤ 512, 1 ≤ m ≤ 512.

对于100%的数据,1 ≤ n ≤ 2048, 1 ≤ m ≤ 2048, -500 ≤ delta ≤ 500,操作不超过200000个,保证运算过程中及最终结果均不超过32位带符号整数类型的表示范围。

by XLk

题解

想写二维线段树。

然而讨论里说卡掉了空间了。

那就硬着头皮写二维树状数组吧。

二维树状数组教做人系列。

对于一维的树状数组,我们知道区间加和区间求和是需要差分并维护两个树状数组的。(不会的可以去用树状数组写一下x谷的线段树模板1)

这个对于二维树状数组同样适用。

那么我们假设\(sum[i][j]\)为差分数组。

\(sum[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1]\)。

为什么要这么假设呢?

因为这样我们可以发现

对于点\((x,y)\)的值就是

\(\sum_{i=1}^x\sum_{j=1}^y\sum_{h=1}^i\sum_{k=1}^j sum[h][k]\)

根据每一次的求值,我们发现以\((x,y)\)为结尾的矩阵,每个差分数组出现的次数为

\(\sum_{i=1}^x\sum_{j=1}^y sum[i][j]*(x-i+1)*(y-j+1)\)

是不是会发现开始变得和一维树状数组求法一样了。

接下来让我们把这个公式拆开食用。

\(\sum_{i=1}^x\sum_{j=1}^y sum[i][j]*(xy+x+y+1)-sum[i][j]*i(y+1)-sum[i][j]*j(x+1)+sum[i][j]*i*j\)

发现只要维护\(sum[i][j],sum[i][j]*i,sum[i][j]*j,sum[i][j]*i*j\)四个树状数组了。

好现在考虑加值。给\((2,2),(3,3)\)的矩阵加上值。

在差分数组里面就是这样的

0 0 0 0 0
0 + 0 - 0
0 0 0 0 0
0 - 0 + 0

就等于正常数组里面的

0 0 0 0 0
0 + + 0 0
0 + + 0 0
0 0 0 0 0

即在给\((x_1,y_1),(x_2,y_2)\)加值时。我们需要给\((x_1,y_1),(x_2+1,y_2+1)\)加,\((x_1,y_2+1),(x_2+1,y_1)\)减。

因为统计数组时,点\((i,j)\)的值为以\((i,j)\)为右下角,\((1,1)\)为左上角的差分矩阵的和。

题解

#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} struct node{
int t[2050][2050];
void add(int x,int y,int v){
for(int i=x;i<=n;i+=(i&(-i)))
for(int j=y;j<=m;j+=(j&(-j)))
t[i][j]+=v;
}
int query(int x,int y){
int sum=0;
for(int i=x;i;i-=(i&(-i)))
for(int j=y;j;j-=(j&(-j)))
sum+=t[i][j];
return sum;
}
}Q,Qi,Qj,Qij; void add(int x,int y,int v){
Q.add(x,y,v);Qi.add(x,y,v*x);
Qj.add(x,y,v*y);Qij.add(x,y,v*x*y);
} int query(int x,int y){
return Q.query(x,y)*(x*y+x+y+1)-Qi.query(x,y)*(y+1)-Qj.query(x,y)*(x+1)+Qij.query(x,y);
} int main(){
n=read();m=read();
char opt[10];
while(scanf("%s",opt)==1){
int xa=read(),ya=read(),xb=read(),yb=read();
if(opt[0]=='L'){
int v=read();
add(xa,ya,v);add(xb+1,ya,-v);
add(xb+1,yb+1,v);add(xa,yb+1,-v);
}
else {
printf("%d\n",query(xb,yb)-query(xb,ya-1)-query(xa-1,yb)+query(xa-1,ya-1));
}
}
return 0;
}

[luogu] P4514 上帝造题的七分钟 (树状数组,二维差分)的更多相关文章

  1. BZOJ 3132(上帝造题的七分钟-树状数组求和+2D逆求和数组)

    3132: 上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 46  Solved: 18[Submit][Status][Discus ...

  2. 【BZOJ3132】上帝造题的七分钟 [树状数组]

    上帝造题的七分钟 Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description “第一分钟,X说,要有矩阵 ...

  3. BZOJ 3132: 上帝造题的七分钟 树状数组+差分

    这个思路很巧妙啊 ~ code: #include <cstdio> #include <algorithm> #define N 2050 #define ll int #d ...

  4. bzoj 4822: [Cqoi2017]老C的任务【扫描线+树状数组+二维差分】

    一个树状数组能解决的问题分要用树套树--还写错了我别是个傻子吧? 这种题还是挺多的,大概就是把每个矩形询问差分拆成四个点前缀和相加的形式(x1-1,y1-1,1)(x2.y2,1)(x1-1,y2,- ...

  5. P4514 上帝造题的七分钟——二维树状数组

    P4514 上帝造题的七分钟 求的是矩阵里所有数的和: 维护四个树状数组: #include<cstdio> #include<cstring> #include<alg ...

  6. P4514 上帝造题的七分钟(二维树状数组)

    P4514 上帝造题的七分钟 二维树状数组 差分维护区间加法,区间求和 #include<cstdio> int read(){ ,f=; ') f=f&&(c!='-') ...

  7. P4514 上帝造题的七分钟

    P4514 上帝造题的七分钟 题意: 二维区间修改 区间查询 --- 错误日志: 写了个 4 重循环忘记调用 \(i\) Solution 二维树状数组 巨尼玛毒瘤 听说二维线段树会 \(MLE\) ...

  8. 洛谷 P4514 上帝造题的七分钟 解题报告

    P4514 上帝造题的七分钟 题目背景 裸体(裸题)就意味着身体(神题). 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了\(0\)的\(n \times m\)矩阵. 第二 ...

  9. 洛谷P4514 上帝造题的七分钟

    P4514 上帝造题的七分钟 题目背景 裸体就意味着身体. 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了000的n×mn×mn×m矩阵. 第二分钟,L说,要能修改,于是便有 ...

随机推荐

  1. JVM 原理

    0 引言  JVM一直是java知识里面进阶阶段的重要部分,如果希望在java领域研究的更深入,则JVM则是如论如何也避开不了的话题,本系列试图通过简洁易读的方式,讲解JVM必要的知识点. 1 运行流 ...

  2. postgressql sql查询拼接多个字段为一个字段查询出来

    表年份 月份 数据1 数据22000 1 1 12000 2 2 12001 2 2 2 2001 5 5 4 希望的查询结果如下所示: 时间 数据1 数据22000年1月 1 12000年2月 2 ...

  3. 基于LXC的虚拟网络自动部署

    一.问题: 在搭建以LXC为基础的虚拟网络时,网络参数繁多,配置过程繁琐.面临一个新的网络拓扑结构时,通常要花费大量时间来构建网络.因此,如果能通过配置文件,自动生成相对应的网络拓扑,并生成操作指令. ...

  4. c 最简单的链表

    #include <stdio.h> struct node { int data; struct node *next; //指向本身的指针 }; // main() { struct ...

  5. 洛谷P1004 方格取数

    网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...

  6. java实例化对象的五种方法

    1.用new语句创建对象,这是最常见的创建对象的方法. 2.通过工厂方法返回对象,如:String str = String.valueOf(23); 3.运用反射手段,调用java.lang.Cla ...

  7. ASP.NET-JSON.NET技巧

    第一个技巧,字符串转JSON 单条的json数据可以使用JObject.Parse将对象转化成JObject对象,你可以接着使用JsonConvert.SerializeObject方法把这个对象序列 ...

  8. UNIX环境高级编程(6):文件I/O(2)

    文件共享: UNIX系统支持在不同进程间共享打开的文件. 内核使用三种数据结构表示打开的文件.他们之间的关系决定了在文件共享方面一个进程对还有一个进程可能产生的影响: (1)每一个进程在进程表中都有一 ...

  9. HDU 4325 Contest 3

    很明显的区间加减单点查询.但由于规模大,于是离散化.在离散化的时候,可以把要查询的点也加入离散化的数组中. #include <iostream> #include <algorit ...

  10. php给图片加入文字水印

    PHP对图片的操作用到GD库.这里我们介绍怎样给图片加入文字水印. 大致分为四步: 1.打开图片 2.操作图片 3.输出图片 4.销毁图片 以下我们上代码来详细解说每步的实现过程: <? php ...