树形DP我只知道千万别写森林转二叉树慢的要死

没有上司的舞会 水!裸!

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; struct node
{
int x,y,next;
}a[];int len,last[];
void ins(int x,int y)
{
len++;
a[len].x=x;a[len].y=y;
a[len].next=last[x];last[x]=len;
} int f[][],h[];
void treedp(int x)
{
f[x][]=;f[x][]=h[x];
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
treedp(y);
f[x][]+=max(f[y][],f[y][]);
f[x][]+=f[y][];
}
} int fa[];
int main()
{
int n,x,y;
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&h[i]);
for(int i=;i<n;i++)
{
scanf("%d%d",&x,&y);
ins(y,x);fa[x]=y;
} int rt;
for(int i=;i<=n;i++)
if(fa[i]==)rt=i;
treedp(rt);
printf("%d\n",max(f[rt][],f[rt][]));
return ;
}

没有上司的舞会

选课 带个背包咯,注意一下背包别重复用一个子节点就好

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; struct node
{
int x,y,next;
}a[];int len,last[];
void ins(int x,int y)
{
len++;
a[len].x=x;a[len].y=y;
a[len].next=last[x];last[x]=len;
} int f[][],h[],tot[];
void treedp(int x)
{
f[x][]=h[x];tot[x]=;
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
treedp(y);
for(int i=tot[x];i>=;i--)
for(int j=tot[y];j>=;j--)
f[x][i+j]=max(f[x][i+j],f[x][i]+f[y][j]);
tot[x]+=tot[y];
}
} int fa[];
int main()
{
int n,m,x,y;
scanf("%d%d",&n,&m);
h[]=;
for(int i=;i<=n;i++)
{
scanf("%d%d",&fa[i],&h[i]);
ins(fa[i],i);
}
memset(f,-,sizeof(f));
treedp();
printf("%d\n",f[][m+]);
return ;
}

选课

poj3585 这题还挺有意思哈,书上说这是“不定根”的树形DP问题,有个很高大上的名词叫二次扫描与换根法

其实自己YY一下,设1为根,第一次dfs把每个点管辖的子树的流量d算出来,对于一个点其实它的流量就是这个d值+从父节点流出去的流量,画个图还是很好解决的,就是min(到父节点的边权,父节点的d值-当前点给父节点的贡献)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; struct node
{
int x,y,c,next;
}a[];int len,last[];
void ins(int x,int y,int c)
{
len++;
a[len].x=x;a[len].y=y;a[len].c=c;
a[len].next=last[x];last[x]=len;
} bool checkleaf(int x,int fr)
{
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(y!=fr)return false;
}
return true;
} int d[];
void dfs(int x,int fr)
{
d[x]=;
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(y!=fr)
{
dfs(y,x);
if(checkleaf(y,x)==true)d[x]+=a[k].c;
else d[x]+=min(a[k].c,d[y]);
}
}
}
int mmax;
void solve(int x,int fr,int rd)
{
mmax=max(mmax,d[x]+rd);
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(y!=fr)
{
int g;
if(checkleaf(y,x)==true)g=d[x]-a[k].c;
else g=d[x]-min(a[k].c,d[y]); if(checkleaf(x,y)==true)solve(y,x,a[k].c);
else solve(y,x,min(rd+g,a[k].c));
}
}
} int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
int n,x,y,c;
scanf("%d",&n);
len=;memset(last,,sizeof(last));
for(int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&c);
ins(x,y,c);ins(y,x,c);
}
dfs(,);
mmax=;solve(,,);
printf("%d\n",mmax);
}
return ;
}

poj3585

0x54 树形DP的更多相关文章

  1. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  2. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  3. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  4. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  5. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  6. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  7. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

  8. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  9. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

随机推荐

  1. TypeError: Object function (req, res, next) { app.handle(req, res, next); } has no method 'configure'

    TypeError: Object function (req, res, next) { app.handle(req, res, next); } has no method 'configure ...

  2. Windows phone开发数据绑定系列(1)--了解数据绑定

    (部分内容参考MSDN文档) 数据绑定是在应用程序UI与业务逻辑之间建立连接的过程.通过数据绑定的方式实现了后台数据和前台UI元素的关联, 为用户提供了更好地交互体验. 数据绑定一般有以下几种体现方式 ...

  3. mysql数据库知识点总结

    一.数据库的基本操作 --------------------------------------------------------------数据库的安装以后更新----------------- ...

  4. (转)JavaScript深入之从原型到原型链

    构造函数创建对象 我们先使用构造函数创建一个对象: function Person() { } var person = new Person(); person.name = 'Kevin'; co ...

  5. 【Oracle】客户端监听配置

    首先找到oracle软件安装的目录,找到\product\11.2.0\client_1\network\admin,打开tnsnames.ora文件: 粘贴一下内容: LISTENER= (DESC ...

  6. Eclipse代码自动提示(内容辅助content assist)

    Eclipse中默认是输入"."后出现自动提示,用于类成员的自动提示,可是有时候我们希望它能在我们输入类的首字母后就出现自动提示,可以节省大量的输入时间(虽然按alt + /会出现 ...

  7. JAVA;使用java.awt.Image的不稳定性

    在使用awt的image时候,不是能时时获取到图像的宽和高, GetWidth()函数偶尔得到的值为-1,暂时没有找到解决方法. 代码: public class picture extends JF ...

  8. RecyclerView 悬浮/粘性头部效果3种方式

    但是以上两种方式onDrawOver()方法实现逻辑对初次查看该段代码要花时间理解.下面代码逻辑(原理一样,同样参考大神代码)相对清晰,易理解 public class StickyDecoratio ...

  9. [CodeForces]1059C Sequence Transformation

    构造题. 我递归构造的,发现如果N>3的话就优先删奇数,然后就把删完的提取一个公约数2,再重复操作即可. 具体原因我觉得是因为对于一个长度大于3的序列,2的倍数总是最多,要令字典序最大,所以就把 ...

  10. [USACO15FEB]Censoring (Silver)

    WA了一万次.... 然后发现多输出了一个空格 我#$%^& 启示我们输出字符的时候应该输出ASCII码看一下.... 然后本题可以用烤馍片算法,每次匹配完以后看看当前最后一位的nxt数组的值 ...