概率图模型是图论概率方法的结合产物。Probabilistic graphical models are a joint probability distribution defined over a graph,概率图模型是定义在一副图上的联合概率分布(joint probability distribution)。

图模型分为两种:

  • 有向图(directed graphs):bayesian networks
  • 无向图(undirected graphs):Markov random fields

1. 定义

贝叶斯网络定义:

  • DAG(Directed Acyclic Graph):有向无环图;
  • 结点 (X1,X2,…,Xn) 表示的是随机变量(random variables);
  • 网络中的每一个结点 Xi,都有条件概率分布,P(Xi∣∣ParG(Xi))
    • ParG(Xi):表示的是 Xi 在网络中的父节点;
  • 贝叶斯网络最终刻画的是结点所代表的随机变量的联合概率密度(joint distribution)
    P(X1,…,Xn)=∏iP(Xi∣∣ParG(Xi))

Probabilistic graphical models are a joint probability distribution defined over a graph,概率图模型是定义在一副图上的联合概率分布(joint probability distribution)。如下图所示:

也即此贝叶斯网络表示了如下的联合概率分布:

p(Lo,Li,S)=P(Lo)P(Li|Lo)P(S|Lo)

2. 贝叶斯网对应的“分布”

贝叶斯网络对应的“分布”是一种合法的概率分布(legal distribution),也即需满足

  • Pi≥0:显然成立
  • ∑Pi=1

    需要证明,比如这样一个简单的例子,应用链式法则(chain rule),展开得:

    ∑D,I,G,S,LP(D,I,G,S,L)======∑D,I,G,S,LP(D)P(I)P(G|I,D)P(S|I)P(L|G)∑D,I,G,SP(D)P(I)P(G|I,D)P(S|I)∑LP(L|G)∑D,I,G,SP(D)P(I)P(G|I,D)P(S|I)⋅1∑D,I,GP(D)P(I)P(G|I,D)∑SP(S|I)1⋯1
    • ∑LP(L|S)=1,这是 CPD(conditional probability distribution)的性质(也即对条件概率分布的一行进行求和);

概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)的更多相关文章

  1. 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)

    本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合. 部分图为手写,由于本人字很丑,望见谅 ...

  2. 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)

    转:http://www.cnblogs.com/Dzhouqi/p/3204481.html本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率 ...

  3. PGM:有向图模型:贝叶斯网络

    http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值 ...

  4. (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝 ...

  5. 斯坦福经典AI课程CS 221官方笔记来了!机器学习模型、贝叶斯网络等重点速查...

    [导读]斯坦福大学的人工智能课程"CS 221"至今仍然是人工智能学习课程的经典之一.为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型 ...

  6. LDA概率图模型之贝叶斯理解

    贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html  本文由LeftNotEasy原 ...

  7. PGM学习之五 贝叶斯网络

    本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships) ...

  8. 贝叶斯网络基础(Probabilistic Graphical Models)

    本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为 ...

  9. R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的 ...

随机推荐

  1. 过滤input框中的特殊字符

    两种方式,我觉得是一样的效果,请看: var charFilter1 = function(str) { var pattern = new RegExp("[`~!@#$^&*() ...

  2. UVA 11987 - Almost Union-Find

    第一次交TLE,说好的并查集昂. 好吧我改.求和.个数 在各个步骤独立算.. 还是TLE. 看来是方法太慢,就一个数组(fa),移动的话,移动跟结点要遍历一次 T T 嗯,那就多一个数组. 0.189 ...

  3. android权限详细

    访问登记属性 android.permission.ACCESS_CHECKIN_PROPERTIES ,读取或写入登记check-in数据库属性表的权限 获取错略位置 android.permiss ...

  4. java測试网络连接是否成功并设置超时时间

    /** * 获取RMI接口状态 * * @return "0":服务正常,"1": 连接报错,"2":连接超时 */ @Override p ...

  5. swift开发网络篇 - post 请求

    /** 所有网络请求,统一使用异步请求! 在今后的开发中,如果使用简单的get/head请求,可以用NSURLConnction异步方法 GET查/POST增/PUT改/DELETE删/HEAD GE ...

  6. ZOJ 1076 Gene Assembly LIS

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=76 题目大意: 题目前面都是废话. 给你一串基因,然后给你上面的外显子的起始和终 ...

  7. Opencv距离变换distanceTransform应用——细化字符轮廓&&查找物体质心

    Opencv中distanceTransform方法用于计算图像中每一个非零点距离离自己最近的零点的距离,distanceTransform的第二个Mat矩阵参数dst保存了每一个点与最近的零点的距离 ...

  8. MyBatis Generator插件之SerializablePlugin

    org.mybatis.generator.plugins.SerializablePlugin 在generatorConfig.xml中加上配置: <plugin type="or ...

  9. Android AIDL 小结

    1.AIDL (Android Interface Definition Language ) 2.AIDL 适用于 进程间通信,并且与Service端多个线程并发的情况,如果只是单个线程 可以使用 ...

  10. Tomcat生产中优化JVM的配置实例

    root 1208 1 0 11月25 ? 00:15:32 /home/root/jvm/jdk1.7.0_79/bin/java -Djava.util.logging.config.file=/ ...