2.1

简单线性回归模型

y与x之间的关系假设

\(y=\beta_0+\beta_1x+\varepsilon\)

\(E(\varepsilon|x)=0\)

\(Var(\varepsilon|x)=\sigma^2~则~Var(y|x)=\sigma^2\) 同方差假定

2.2

回归参数的最小二乘估计

回归系数 \(\beta_0,~\beta_1\) 的估计

残差平方和

\[S(\hat{\beta}_0,\hat{\beta}_1)=\sum^n_{i=1}(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)^2
\]

分别求偏导得到

\[\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\]
\[\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \cdot \bar{x} \cdot \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \cdot \bar{x}^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}}
\]

性质

\[\frac{\partial S}{\partial\beta_0}=\sum(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)=0~\Rightarrow~\sum e_i=0
\]
\[\frac{\partial S}{\partial\beta_1}=\sum(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)x_i=0~\Rightarrow
\]
\[\sum e_ix_i=\sum (e_i-\bar{e})x_i=\sum(e_i-\bar{e})(x_i-\bar{x})=0
\]

进而知道\(\{e_i\}与\{x_i\}\) 互不相关

\(\sum(e_i-\bar{e})(y_i-\bar{y})=\sum e_iy_i=\sum e_i(\hat{\beta}_0+\hat{\beta}_1x_i)=\hat{\beta}_0\sum e_i+\hat{\beta}_1\sum(e_ix_i)=0\)

因此得出\(\{e_i\}与\{y_i\}\) 互不相关

\(\{e_i\}与\{\hat{y}_i\}\) 互不相关

\(Cov(\bar{y},\hat{\beta}_1)=0\)

\[\begin{aligned}
Cov(\bar{y},\hat{\beta}_1)&=\frac{1}{n}\sum Cov(y_i,\hat{\beta}_1)\\
&=\frac{1}{n}Cov(\sum y_i,\sum c_iy_i)\\
&=\frac{1}{n}\sum (c_i\sigma^2)\\
&=0
\end{aligned}\]
  • OLS是线性估计

  • OLS是无偏估计

  • LS估计的方差可计算为

随机误差方差的 \(\sigma^2\) 估计

均方误差

\[\begin{array} aMSE(\theta)=E(\hat{\theta}-\theta)^2=E(\hat{\theta}-E(\hat{\theta})+E(\hat{\theta})-\theta)^2=Var(\hat{\theta})+(bias(\hat{\theta}))^2\\
bias(\hat{\theta})=E(\hat{\theta})-\theta\end{array}\]

定义

\[S S_{\text {Res }}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
\]
\[\hat{\sigma}^{2}=\frac{S S_{\text {Res }}}{n-2}=M S_{\text {Res }}
\]

在第三章我们将证明 \(E\left(\hat{\sigma}^{2}\right)=\sigma^{2}\)

参数估计的标准误

\[s.e.(\hat{\beta}_1)=\sqrt{\frac{\frac{S S_{\text {res }}}{n-2}}{S_{xx}}}
\]
\[s.e.(\hat{\beta}_0)=\sqrt{\frac{\frac{S S_{\text {res }}}{n-2}}{n}+\bar{x}^2\frac{\frac{S S_{\text {res }}}{n-2}}{S_{xx}}}
\]

2.3

斜率与截距的假设检验

OLS 估计的抽样分布

\[\hat{\beta}_{1}=\sum_{i=1}^{n} c_{i} y_{i}=\beta_{1}+\sum_{i=1}^{n} c_{i} \epsilon_{i}, \quad \hat{\beta}_{0}=\sum_{i=1}^{n} d_{i} y_{i}=\beta_{0}+\sum_{i=1}^{n} d_{i} \epsilon_{i}
\]
\[\hat{\beta}_{1}\sim N(\beta_1,\frac{\sigma^2}{S_{xx}})~,~ ~ \hat{\beta}_{0}\sim N(\beta_0,\bar{x}^2\frac{\sigma^2}{S_{xx}})
\]

t 检验

由于

\[t_{0}=\frac{\hat{\beta}_{1}-\beta_{10}}{\hat{\sigma} / \sqrt{S_{x x}}}=\frac{\hat{\beta}_{1}-\beta_{10}}{\hat{\sigma} / \sqrt{S_{x x}}} \frac{\sigma}{\hat{\sigma}}=\frac{Z_{0}}{\sqrt{\frac{SS_{\text {res }}}{(n-2) \sigma^{2}}}}=Z_{0} / \sqrt{\frac{M S_{\text {res }}}{\sigma^{2}}} \sim t(n-2)
\]

因此,为了检验两变量间是否有线性关系,将假设斜率 \(\beta_{10}=0\)

t检验统计量为

\[t=\frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{xx}}}=\frac{\hat{\beta}_1}{s.e.(\hat{\beta}_1)}={\hat{\beta}_1}/{\sqrt{\frac{\frac{S S_{\text {res }}}{n-2}}{S_{xx}}}}
\]

p 值

\[pvalue=P(|t_{n-2}|>|\frac{\hat{\beta}_1}{s.e.(\hat{\beta}_1)}|)
\]

区间估计

参数的置信区间

\(\beta_0~\beta_1\)的置信区间

\[\frac{\hat{\beta}_{1}-\beta_{1}}{s . e .\left(\hat{\beta}_{1}\right)} \sim t({n-2}), \quad \frac{\hat{\beta}_{0}-\beta_{0}}{s . e .\left(\hat{\beta}_{0}\right)} \sim t({n-2})
\]

可得 \(\beta_{i}\) 的 \(1-\alpha\) 置信区间为

\[\hat{\beta}_{i} \pm t_{n-2}(1-\alpha / 2) * \text { s.e. }\left(\hat{\beta}_{i}\right)
\]

响应变量均值 \(E(y|x_0)\) 的估计和置信区间

\(\because\)

\(E\left(y \mid x_{0}\right)=\beta_{0}+\beta_{1} x_{0}\)

\(\therefore\)

\(\hat{\mu}_{y \mid x_{0}}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}=\bar{y}+\hat{\beta}_{1}\left(x_{0}-\bar{x}\right)\)

而且

\[Var\left(y \mid x_{0}\right)=\sigma^2({\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}})
\]

可知

\[\frac{\hat{\mu}_{y \mid x_{0}}-\mu_{y \mid x_{0}}}{\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}} \sim t({n-2})
\]

所以\(E(y|x_0)\) 的置信区间

\[\hat{\mu}_{y \mid x_{0}}\pm t_{n-2}(1-\alpha/2)\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}
\]

新观测的预测

预测误差为

\[\begin{aligned}\psi&=y_{0}-\hat{y}_{0}\\
&=\beta_{0}+\beta_{1} x_{0}+\epsilon_{0}-(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0})\\
&=(\beta_{0}-\hat{\beta}_{0})+(\beta_{1}-\hat{\beta}_{1}) x_{0}+\epsilon_{0}
\end{aligned}\]

预测方差为

\[\begin{aligned}\operatorname{Var}(\psi)&=\operatorname{Var}(y_{0}-\hat{y}_{0})\\
&=\operatorname{Var}(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}+\epsilon_{0})\\
&=\sigma^2(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}})
\end{aligned}\]

因此有

\[\frac{\psi-E(\psi)}{\sqrt{\operatorname{Var}(\psi)}}=\frac{y_{0}-\hat{y}_{0}}{\sigma \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}} \sim N(0,1)
\]

所以

\[\frac{y_{0}-\hat{y}_{0}}{\hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}} \sim t_{n-2}
\]

于是可得 \(1-\alpha\) 预测区间为

\[\hat{y}_{0} \pm t_{n-2}(1-\alpha / 2) \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}}
\]

决定系数 \(R^2\)

可以定义

\[\begin{aligned}
S S_{\text {total }}&=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\\
&=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}+\hat{y}_{i}-\bar{y}\right)^{2}\\
&=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+2 \sum_{i=1}^{n} e_{i}\left(\hat{y}_{i}-\bar{y}\right) \triangleq \text { SSres }+\text { SSreg }
\end{aligned}\]
\[R^{2}=\frac{SS_{reg}}{SS_T}=\frac{S S_{t o t a l}-S S_{r e s}}{S S_{t o t a l}}
\]

表明了 y 的样本变异中被 x 解释了的部分

可以推导出下列结论

\[R^{2}=\frac{\hat{\beta}_{1}^{2}}{\hat{\beta}_{1}^{2}+\frac{n-2}{n-1} \cdot \frac{\hat{\sigma}^{2}}{\hat{\sigma}_{x}^{2}}}
\]

因此 \(R^{2}\) 较大, 并不意味着斜率 \(\hat{\beta}_{1}\) 就较大;

  • 应该谨慎地解释和使用 \(R^{2}\) 。在实际问题里, \(R^{2}\) 作为模型拟合优 度的度量是有缺陷的, 一个典型的问题是, 在多元线性回归模型 里, 加人一个变量总会使得 \(R^{2}\) 升高, 因此用它做标准选择模型 的话, 总是会选取一个最复杂的模型。
  • 若 \(R^{2}=1\) ,则完美拟合
  • 若 \(R^{2}=0\) ,则两变量无关系

回归分析-2.X 简单线性回归的更多相关文章

  1. Python回归分析五部曲(一)—简单线性回归

    回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析( ...

  2. SPSS数据分析—简单线性回归

    和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化 ...

  3. day-12 python实现简单线性回归和多元线性回归算法

    1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...

  4. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  5. 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归

    一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...

  6. 机器学习(2):简单线性回归 | 一元回归 | 损失计算 | MSE

    前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回 ...

  7. 机器学习——Day 2 简单线性回归

    写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...

  8. R 语言中的简单线性回归

    ... sessionInfo() # 查询版本及系统和库等信息 getwd() path <- "E:/RSpace/R_in_Action" setwd(path) rm ...

  9. 简单线性回归(梯度下降法) python实现

    grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

  10. 简单线性回归(最小二乘法)python实现

      简单线性回归(最小二乘法)¶   0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt   1.导入数据¶ In [ ...

随机推荐

  1. S2-012 CVE-2013-1965

    漏洞名称 S2-012(CVE-2013-1965) 远程代码执行 利用条件 Struts Showcase App 2.0.0 - Struts Showcase App 2.3.14.2 影响版本 ...

  2. CVE-2022-32532 Apache Shiro 身份认证绕过

    漏洞名称 CVE-2022-32532 Apache Shiro 身份认证绕过 利用条件 Apache Shiro < 1.9.1 漏洞原理 使用RegexRequestMatcher进行权限配 ...

  3. [C++]default constructor默认构造函数

    例子: class A{ public: int a; char b; } A temp; cout<<temp.a<<endl; 问题1:什么时候会合成出一个default ...

  4. 基于 VScode 搭建 STM32 运行环境

    所需软件 vscode: 是我们的代码编辑器 STM32CubeMX: 是我们配置和初始化的软件 OpenOCD: 是开源片上调试器, 他下载完是一个压缩包, 需要配置环境 arm-none-eabi ...

  5. 移动端安卓开发学习记录--Android Studio打断点调试操作步骤记录

    今天我发现一个很迷的事情,我是安卓初学者,发现打印对象的话,打印不出来,但是打印对象的属性值,却可以打印出来,迷啊!!!我好迷茫 咨询大佬后,得知,JAVA打印对象的话,打印出来的不是它自己的内容,而 ...

  6. Keil 5(C51 与 MDK-ARM)官网下载安装包 [ 图文教程 ]

    前言 本篇我将介绍 Keil C51 和 MDK-ARM 两大集成开发环境的安装包下载方法,帮助大家安全快速的从官网下载安装包. 博主编写了软件安装教程,可以在安装包下载完成后,跳转观看图文教程进行软 ...

  7. 【随笔记】T507 ADC SGM58031 16BIT 4Channel 调试记录

    文章介绍 本文主要描述在 T507 Android 10 Linux 4.9 平台下,调试 SGM58031 芯片的记录,实现单芯片实时采集外部四通道的电压数值. 芯片介绍 SGM58031 是一款低 ...

  8. ChatGPT 背后核心技术的白话版

    本文是关于ChatGPT 背后核心技术实现的一个通俗白话版,不涉及到的AI具体实现的技术细节哦. 在编排上增加了一些分割,内容具体如下: LLMs(大型语言模型) 如果将ChatGPT比作是动物,它就 ...

  9. ubuntu20.04安装systemback

    sudo add-apt-repository --remove ppa:nemh/systemback sudo apt-key adv --keyserver keyserver.ubuntu.c ...

  10. 【TS】any和void

    any类型 any类型,在ts中是一个万能类型,它可以替代所有类型,也就是说定义了any类型,就不用担心ts的类型束缚,但如果所有的类型都使用any那么ts就失去了它的作用,我们使用ts就是为了规范类 ...