基于Python的OpenGL 04 之变换
1. 概述
本文基于Python语言,描述OpenGL的变换
前置知识可参考:
笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:
2. 导入GLM
平移、旋转、缩放等变换主要是使用变换矩阵来实现
OpenGL Mathematics(GLM)是一个基于GLSL的只有头文件的C++数学运算库
GLM的GitHub站点为:g-truc/glm: OpenGL Mathematics (GLM) (github.com)
PyGLM是GLM的Python绑定,其API基本一致
PyGLM的GitHub站点为:Zuzu-Typ/PyGLM: Fast OpenGL Mathematics (GLM) for Python (github.com)
PyGLM的PyPi地址为:PyGLM · PyPI
使用pip安装PyGLM:
pip install PyGLM
引入GLM:
import glm
3. 设置变换矩阵
设置一个平移、旋转、缩放的矩阵:
trans = glm.mat4(1.0)
trans = glm.translate(trans, glm.vec3(0.5, -0.5, 0.0)*np.sin(glfw.get_time()))
trans = glm.rotate(trans, glfw.get_time(), glm.vec3(0.0, 0.0, 1.0))
trans = glm.scale(trans, glm.vec3(1.0, 1.0, 0.0)*(np.sin(glfw.get_time())*0.5+0.5))
在顶点着色器中将变换矩阵与坐标结合:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;
out vec3 ourColor;
out vec2 TexCoord;
uniform mat4 transform;
void main()
{
gl_Position = transform * vec4(aPos, 1.0);
ourColor = aColor;
TexCoord = aTexCoord;
}
将变换矩阵输入到GPU:
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'transform'), 1, GL_FALSE, glm.value_ptr(trans))
如果顺利的话,结果如下:

4. 完整代码
主要文件test.py:
import glfw as glfw
from OpenGL.GL import *
import numpy as np
from PIL.Image import open
import glm as glm
import shader as shader
glfw.init()
window = glfw.create_window(800, 600, "transformation", None, None)
glfw.make_context_current(window)
VAO = glGenVertexArrays(1)
glBindVertexArray(VAO)
vertices = np.array([
# ---- 位置 ---- ---- 颜色 ---- - 纹理坐标 -
0.5, 0.5, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, # 右上
0.5, -0.5, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, # 右下
-0.5, -0.5, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, # 左下
-0.5, 0.5, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, # 左上
])
VBO = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, VBO)
glBufferData(GL_ARRAY_BUFFER, 8 * vertices.size, vertices, GL_STATIC_DRAW)
glVertexAttribPointer(0, 3, GL_DOUBLE, GL_FALSE, int(8 * 8), None)
glEnableVertexArrayAttrib(VAO, 0)
glVertexAttribPointer(1, 3, GL_DOUBLE, GL_FALSE, int(8 * 8), ctypes.c_void_p(8 * 3))
glEnableVertexArrayAttrib(VAO, 1)
glVertexAttribPointer(2, 2, GL_DOUBLE, GL_FALSE, int(8 * 8), ctypes.c_void_p(8 * 6))
glEnableVertexAttribArray(2)
indices = np.array([
0, 1, 3, # first triangle
1, 2, 3 # second triangle
])
EBO = glGenBuffers(1)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, 8 * indices.size, indices, GL_STATIC_DRAW)
image = open('./textures/container.jpg')
texture = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, texture)
# 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, image.size[0], image.size[1], 0, GL_RGB, GL_UNSIGNED_BYTE, image.tobytes())
glGenerateMipmap(GL_TEXTURE_2D)
shader = shader.Shader("./glsl/test.vs.glsl", "./glsl/test.fs.glsl")
while not glfw.window_should_close(window):
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT)
trans = glm.mat4(1.0)
trans = glm.translate(trans, glm.vec3(0.5, -0.5, 0.0)*np.sin(glfw.get_time()))
trans = glm.rotate(trans, glfw.get_time(), glm.vec3(0.0, 0.0, 1.0))
trans = glm.scale(trans, glm.vec3(1.0, 1.0, 0.0)*(np.sin(glfw.get_time())*0.5+0.5))
shader.use()
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'transform'), 1, GL_FALSE, glm.value_ptr(trans))
glBindVertexArray(VAO)
glActiveTexture(GL_TEXTURE0) # 在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture)
# glDrawArrays(GL_TRIANGLES, 0, 3)
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, None)
glfw.swap_buffers(window)
glfw.poll_events()
shader.delete()
顶点着色器test.vs.glsl:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;
out vec3 ourColor;
out vec2 TexCoord;
uniform mat4 transform;
void main()
{
gl_Position = transform * vec4(aPos, 1.0);
ourColor = aColor;
TexCoord = aTexCoord;
}
片段着色器test.fs.glsl:
#version 330 core
out vec4 FragColor;
in vec3 ourColor;
in vec2 TexCoord;
uniform sampler2D texture1;
uniform sampler2D texture2;
void main()
{
FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}
5. 参考资料
[1]变换 - LearnOpenGL CN (learnopengl-cn.github.io)
[2]glm/manual.md at master · g-truc/glm (github.com)
[3]OpenGL学习笔记三——引入GLM库,实现transform_绿洲守望者的博客-CSDN博客_glm库
[4]OpenGL学习笔记(五)纹理 - 知乎 (zhihu.com)
[5]PyGLM · PyPI
[6]LearnOpenGL-Python/transformations.py at master · Zuzu-Typ/LearnOpenGL-Python (github.com)
基于Python的OpenGL 04 之变换的更多相关文章
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- OpenGL 的空间变换(上):矩阵在空间几何中的应用
在使用 OpenGL 的应用程序中,当我们指定了模型的顶点后,顶点依次会变换到不同的 OpenGL 空间中,最后才会被显示到屏幕上.在变换的过程中,通过使用矩阵,我们更高效地来完成这些变换工作. 本篇 ...
- OpenGL 的空间变换(下):空间变换
通过本文的上篇 OpenGL 的空间变换(上):矩阵在空间几何中的应用 ,我们了解到矩阵的基础概念.并且掌握了矩阵在空间几何中的应用.接下来,我们将结合矩阵来了解 OpenGL 的空间变换. 在使用 ...
- 简单理解OpenGL模型视图变换
前几天学习了OpenGL的绘图原理(其实就是坐标的不停变换变换),看到网上有个比较好的例程,于是学习了下,并在自己感兴趣的部分做了注释. 首先通过glMatrixMode(GL_MODELVIEW)设 ...
- Python基于Python实现批量上传文件或目录到不同的Linux服务器
基于Python实现批量上传文件或目录到不同的Linux服务器 by:授客 QQ:1033553122 实现功能 1 测试环境 1 使用方法 1 1. 编辑配置文件conf/rootpath_fo ...
- 基于Python的频谱分析(一)
1.傅里叶变换 傅里叶变换是信号领域沟通时域和频域的桥梁,在频域里可以更方便的进行一些分析.傅里叶主要针对的是平稳信号的频率特性分析,简单说就是具有一定周期性的信号,因为傅里叶变换采取的是有限取样的 ...
- 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)
在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...
- 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(四):安装MySQL数据库
基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...
- 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(二):Apache安装和配置
基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...
随机推荐
- Nmap安装
Nmap(Network Mapper,网络映射器)是一款开放源代码的网络探测和安全审核工具.它被设计用来快速扫描大型网络,包括主机探测与发现.开放的端口情况.操作系统与应用服务指纹识别.WAF识别及 ...
- jdk调度任务线程池ScheduledThreadPoolExecutor工作原理解析
jdk调度任务线程池ScheduledThreadPoolExecutor工作原理解析 在日常开发中存在着调度延时任务.定时任务的需求,而jdk中提供了两种基于内存的任务调度工具,即相对早期的java ...
- java Jdbc 简单方法
1.注册驱动(第一种方法) Class.forName(com.mysql.jdbc.Driver"); 2.获得连接DriverManager.getConnection(url,user ...
- JavaScript:箭头函数:省略写法
之所以把箭头函数拎出来,是因为它不仅仅是声明函数的一种方式,它还是函数式编程的重要根基,它使得函数的使用更加的灵活,同时,它的语法,也相对于function声明的函数更加灵活和复杂. 箭头函数的省略写 ...
- [OpenCV实战]47 基于OpenCV实现视觉显著性检测
人类具有一种视觉注意机制,即当面对一个场景时,会选择性地忽略不感兴趣的区域,聚焦于感兴趣的区域.这些感兴趣的区域称为显著性区域.视觉显著性检测(Visual Saliency Detection,VS ...
- .Net 7 被Microsoft的开源免费PowerToys工具独立附带
楔子 什么是PowerToys? Microsoft PowerToys 是一组实用工具,可帮助高级用户调整和简化其 Windows 体验,从而提高工作效率. 简而言之,就是给最新的windows11 ...
- 聊聊Cookie、Session、Token 背后的故事
摘要:Cookie.Session.Token 这三者是不同发展阶段的产物 本文分享自华为云社区<Cookie.Session.Token 背后的故事>,作者: 龙哥手记. 1. 网站交互 ...
- 高并发解决方案orleans实践
开具一张图,展开来聊天.有从单个服务.consul集群和orleans来展开高并发测试一个小小数据库并发实例. 首先介绍下场景,创建一个order,同时去product表里面减掉一个库存.很简单的业务 ...
- 03初识MapReduce
初识MapReduce 一.什么是MapReduce MapReduce是一种编程范式,它借助Map将一个大任务分解成多个小任务,再借助Reduce归并Map的结果.MapReduce虽然原理很简单, ...
- (22)go-micro微服务kibana使用
目录 一 kibana介绍 二 Kibana主要功能 三 Kibana侧边栏 四 Kibana安装 1.拉取镜像 2.运行命令 3.查看是否运行 五 Kibana使用 六 Kibana图形化界面 七 ...