前言

前置

\(\sf{Solution}\)

既然有了 \(n\) ,那找出 \(a\) 和 \(b\) 就只要枚举 \(a\) 的范围 \(1\sim n\),判断 \(a\) 和 \(n-a\) 是否为质数.

因为 \(a\) 和 \(b\) 都不为负数,所以可以缩小枚举范围为 \(1\sim \dfrac{n}{2}\) .

至于判质数,相信欧拉筛能解决问题.

欧拉筛相关(请忽略中二部分

\(\sf{Code}\)

#include<iostream>
using namespace std;
int n,ans,prime[5000005];
bool visit[10000005];
int main()
{
ios::sync_with_stdio(false);
visit[1]=true;//初始化
for(int i=2;i<=10000000;++i)
{
if(!visit[i])
prime[++ans]=i;
for(int j=1;prime[j]*i<=10000000&&j<=ans;++j)
{
visit[i*prime[j]]=true;
if(!(i%prime[j]))
break;
}
}//欧拉筛
while(cin>>n&&n!=0)
{
bool flag=false;//别忘了初始化
cout<<n<<":\n";
for(int i=2; i<=n/2; ++i)
{
int a=i,b=n-i;
if(!visit[a]&&!visit[b])
{
cout<<a<<"+"<<b<<"\n";
flag=true;//有解标记
break;
}
}
if(!flag)
cout<<"NO WAY!\n";//无解
}
return 0;
}

题解UVA10948 The primary problem的更多相关文章

  1. 【题解】CF45G Prime Problem

    [题解]CF45G Prime Problem 哥德巴赫板子题? \(\frac{n(n+1)}{2}\)若是质数,则不需要分了. 上式 若是奇数,那么拆成2和另一个数. 上式 若是偶数吗,直接\(O ...

  2. 【题解】P4137 Rmq Problem(莫队)

    [题解]P4137 Rmq Problem(莫队) 其实这道题根本就不用离散化! 因为显然有\(mex\)值是\(\le 2\times 10^5\)的,所以对于大于\(2\times 10^5\)的 ...

  3. 题解西电OJ (Problem 1006 - 转盘游戏)--动态规划

    题目链接 : http://acm.xidian.edu.cn/land/problem/detail?problem_id=1006 Description wm最近喜欢上一种无聊的转盘解锁游戏,他 ...

  4. 题解-CodeChef IOPC14L Sweets Problem

    Problem CodeChef-IOPC14L 题目概要:给定 \(n\) 种糖果且给定每种糖果的数量 \(A_i\),\(Q\) 组询问,每次问选出 \(S\) 个糖果的方案数(模\(10^9+7 ...

  5. 【题解】An Easy Problem

    题目描述 给定一个正整数N,求最小的.比N大的正整数M,使得M与N的二进制表示中有相同数目的1. 举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么最小的比N大的并且二进制表 ...

  6. [题解]UVA10026 Shoemaker's Problem

    链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...

  7. [题解] [AGC024F] Simple Subsequence Problem

    题目大意 有一个 01 串集合 \(S\),其中每个串的长度都不超过 \(N\),你要求出 \(S\) 中至少是 \(K\) 个串的子序列的最长串,如果有多解,输出字典序最小的那组解. 由于 \(S\ ...

  8. 题解西电OJ (Problem 1007 -做一名正气的西电人 )--长整型计算

    Description 一天,wm和zyf想比比谁比较正气,但正气这种东西无法量化难以比较,为此,他们想出了一个方法,两人各写一个数字,然后转化为二进制,谁的数字中二进制1多谁就比较正气! Input ...

  9. 题解西电OJ (Problem 1005 -跳舞毯)--动态规划

    Description zyf不小心得了一种怪病,为了维持一天的精力他必须不停跳动.于是他买了一条跳舞毯,每天跳上几小时.众所周知,跳舞毯是给定一个序列,让你在指定时间踏指定的按钮,但zyf似乎不怎么 ...

随机推荐

  1. transform: scale() 实现鼠标悬浮在元素之上出现和消失

    前言 transform属性允许你旋转,缩放,倾斜或平移给定元素.其中scale(x, y)就是实现元素缩放的属性值. scale(x, y)的 x 乘以原本元素的 x:y 乘以原本的元素 y,就可以 ...

  2. Java项目生成电脑桌面快捷脚本

    一.场景说明 经常需要查询以及设置手机验证码,一般验证码都是放在Redis,为了节省短信费,可以直接设置Redis,本篇内容主要介绍如何便捷查询和设置手机验证码,非开发人员也会操作. 二.Java代码 ...

  3. SiteSucker Pro for Mac 专业的网站下载工具

    SiteSucker Mac版是Mac os平台上的一款帮助用户下载数据的mac下载工具,SiteSucker绝对是一扒网站的利器,不仅仅是下载网站的HTML源文件,他连网站整体架构以及下面的所有文本 ...

  4. 「雅礼集训 2017 Day7」跳蚤王国的宰相(树的重心)

    题面 来源 「 雅 礼 集 训 2017 D a y 7 」 跳 蚤 王 国 的 宰 相   传 统 2000   m s 1024   M i B {\tt「雅礼集训 2017 Day7」跳蚤王国的 ...

  5. 【java】学习路线5-public和private、构造方法、this关键字、封装对象、static关键字、main方法结构解析

    //一个教务管理系统//知识点清单/*public & private 的区别一个是公开的,一个是私有的,作用域不一样,访问的权限不一样咯如果是用private修饰,则调用者只可以是在当前的作 ...

  6. HC32L110(三) HC32L110的GCC工具链和VSCode开发环境

    目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110(三) HC32L110的GCC工具链和VS ...

  7. 简单创建一个SpringCloud2021.0.3项目(三)

    目录 1. 项目说明 1. 版本 2. 用到组件 3. 功能 2. 上俩篇教程 3. Gateway集成sentinel,网关层做熔断降级 1. 超时熔断降级 2. 异常熔断 3. 集成sentine ...

  8. Scrum五大会议要怎么开?

    在Scrum框架中,我们对Scrum的五个会议一定都不陌生,但如何组织这五个会议,才能让Scrum团队真正积极.主动地参与进项目管理中呢?接下来我们会以一个Sprint为周期,详细介绍一下Sprint ...

  9. 微信小程序-全局配置、组件、页面跳转、用户信息等

    全局配置 三个页面 app.json pages字段 "pages":[ "pages/index/index", # 首页 "pages/home/ ...

  10. HCNP Routing&Switching之ARP安全

    前文我们了解了IP安全相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/16652367.html:今天我们来聊一聊ARP安全相关话题: 什么是ARP? ...