题解UVA10948 The primary problem
前言
\(\sf{Solution}\)
既然有了 \(n\) ,那找出 \(a\) 和 \(b\) 就只要枚举 \(a\) 的范围 \(1\sim n\),判断 \(a\) 和 \(n-a\) 是否为质数.
因为 \(a\) 和 \(b\) 都不为负数,所以可以缩小枚举范围为 \(1\sim \dfrac{n}{2}\) .
至于判质数,相信欧拉筛能解决问题.
欧拉筛相关(请忽略中二部分
\(\sf{Code}\)
#include<iostream>
using namespace std;
int n,ans,prime[5000005];
bool visit[10000005];
int main()
{
ios::sync_with_stdio(false);
visit[1]=true;//初始化
for(int i=2;i<=10000000;++i)
{
if(!visit[i])
prime[++ans]=i;
for(int j=1;prime[j]*i<=10000000&&j<=ans;++j)
{
visit[i*prime[j]]=true;
if(!(i%prime[j]))
break;
}
}//欧拉筛
while(cin>>n&&n!=0)
{
bool flag=false;//别忘了初始化
cout<<n<<":\n";
for(int i=2; i<=n/2; ++i)
{
int a=i,b=n-i;
if(!visit[a]&&!visit[b])
{
cout<<a<<"+"<<b<<"\n";
flag=true;//有解标记
break;
}
}
if(!flag)
cout<<"NO WAY!\n";//无解
}
return 0;
}
题解UVA10948 The primary problem的更多相关文章
- 【题解】CF45G Prime Problem
[题解]CF45G Prime Problem 哥德巴赫板子题? \(\frac{n(n+1)}{2}\)若是质数,则不需要分了. 上式 若是奇数,那么拆成2和另一个数. 上式 若是偶数吗,直接\(O ...
- 【题解】P4137 Rmq Problem(莫队)
[题解]P4137 Rmq Problem(莫队) 其实这道题根本就不用离散化! 因为显然有\(mex\)值是\(\le 2\times 10^5\)的,所以对于大于\(2\times 10^5\)的 ...
- 题解西电OJ (Problem 1006 - 转盘游戏)--动态规划
题目链接 : http://acm.xidian.edu.cn/land/problem/detail?problem_id=1006 Description wm最近喜欢上一种无聊的转盘解锁游戏,他 ...
- 题解-CodeChef IOPC14L Sweets Problem
Problem CodeChef-IOPC14L 题目概要:给定 \(n\) 种糖果且给定每种糖果的数量 \(A_i\),\(Q\) 组询问,每次问选出 \(S\) 个糖果的方案数(模\(10^9+7 ...
- 【题解】An Easy Problem
题目描述 给定一个正整数N,求最小的.比N大的正整数M,使得M与N的二进制表示中有相同数目的1. 举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么最小的比N大的并且二进制表 ...
- [题解]UVA10026 Shoemaker's Problem
链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...
- [题解] [AGC024F] Simple Subsequence Problem
题目大意 有一个 01 串集合 \(S\),其中每个串的长度都不超过 \(N\),你要求出 \(S\) 中至少是 \(K\) 个串的子序列的最长串,如果有多解,输出字典序最小的那组解. 由于 \(S\ ...
- 题解西电OJ (Problem 1007 -做一名正气的西电人 )--长整型计算
Description 一天,wm和zyf想比比谁比较正气,但正气这种东西无法量化难以比较,为此,他们想出了一个方法,两人各写一个数字,然后转化为二进制,谁的数字中二进制1多谁就比较正气! Input ...
- 题解西电OJ (Problem 1005 -跳舞毯)--动态规划
Description zyf不小心得了一种怪病,为了维持一天的精力他必须不停跳动.于是他买了一条跳舞毯,每天跳上几小时.众所周知,跳舞毯是给定一个序列,让你在指定时间踏指定的按钮,但zyf似乎不怎么 ...
随机推荐
- transform: scale() 实现鼠标悬浮在元素之上出现和消失
前言 transform属性允许你旋转,缩放,倾斜或平移给定元素.其中scale(x, y)就是实现元素缩放的属性值. scale(x, y)的 x 乘以原本元素的 x:y 乘以原本的元素 y,就可以 ...
- Java项目生成电脑桌面快捷脚本
一.场景说明 经常需要查询以及设置手机验证码,一般验证码都是放在Redis,为了节省短信费,可以直接设置Redis,本篇内容主要介绍如何便捷查询和设置手机验证码,非开发人员也会操作. 二.Java代码 ...
- SiteSucker Pro for Mac 专业的网站下载工具
SiteSucker Mac版是Mac os平台上的一款帮助用户下载数据的mac下载工具,SiteSucker绝对是一扒网站的利器,不仅仅是下载网站的HTML源文件,他连网站整体架构以及下面的所有文本 ...
- 「雅礼集训 2017 Day7」跳蚤王国的宰相(树的重心)
题面 来源 「 雅 礼 集 训 2017 D a y 7 」 跳 蚤 王 国 的 宰 相 传 统 2000 m s 1024 M i B {\tt「雅礼集训 2017 Day7」跳蚤王国的 ...
- 【java】学习路线5-public和private、构造方法、this关键字、封装对象、static关键字、main方法结构解析
//一个教务管理系统//知识点清单/*public & private 的区别一个是公开的,一个是私有的,作用域不一样,访问的权限不一样咯如果是用private修饰,则调用者只可以是在当前的作 ...
- HC32L110(三) HC32L110的GCC工具链和VSCode开发环境
目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110(三) HC32L110的GCC工具链和VS ...
- 简单创建一个SpringCloud2021.0.3项目(三)
目录 1. 项目说明 1. 版本 2. 用到组件 3. 功能 2. 上俩篇教程 3. Gateway集成sentinel,网关层做熔断降级 1. 超时熔断降级 2. 异常熔断 3. 集成sentine ...
- Scrum五大会议要怎么开?
在Scrum框架中,我们对Scrum的五个会议一定都不陌生,但如何组织这五个会议,才能让Scrum团队真正积极.主动地参与进项目管理中呢?接下来我们会以一个Sprint为周期,详细介绍一下Sprint ...
- 微信小程序-全局配置、组件、页面跳转、用户信息等
全局配置 三个页面 app.json pages字段 "pages":[ "pages/index/index", # 首页 "pages/home/ ...
- HCNP Routing&Switching之ARP安全
前文我们了解了IP安全相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/16652367.html:今天我们来聊一聊ARP安全相关话题: 什么是ARP? ...