1|0安装

pyecharts 兼容 Python2 和 Python3。目前版本为 0.1.2

pip install pyecharts

2|0入门

首先开始来绘制你的第一个图表

from pyecharts import Bar

bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.show_config()
bar.render()

Tip: 可以按右边的下载按钮将图片下载到本地

  • add()

    主要方法,用于添加图表的数据和设置各种配置项
  • show_config()

    打印输出图表的所有配置项
  • render()

    默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r"e:\my_first_chart.html"),文件用浏览器打开。

    默认的编码类型为 UTF-8,在 Python3 中是没什么问题的,Python3 对中文的支持好很多。但是在 Python2 中,编码的处理是个很头疼的问题,暂时没能找到完美的解决方法,目前只能通过文本编辑器自己进行二次编码,我用的是 Visual Studio Code,先通过 Gbk 编码重新打开,然后再用 UTF-8 重新保存,这样用浏览器打开的话就不会出现中文乱码问题了。

基本上所有的图表类型都是这样绘制的:

  1. chart_name = Type() 初始化具体类型图表。
  2. add() 添加数据及配置项。
  3. render() 生成 .html 文件。

2|1Bar(柱状图/条形图)

from pyecharts import Bar

bar = Bar("标记线和标记点示例")
bar.add("商家A", attr, v1, mark_point=["average"])
bar.add("商家B", attr, v2, mark_line=["min", "max"])
bar.render()
from pyecharts import Bar

bar = Bar("x 轴和 y 轴交换")
bar.add("商家A", attr, v1)
bar.add("商家B", attr, v2, is_convert=True)
bar.render()

2|2EffectScatter(带有涟漪特效动画的散点图)

from pyecharts import EffectScatter

v1 = [10, 20, 30, 40, 50, 60]
v2 = [25, 20, 15, 10, 60, 33]
es = EffectScatter("动态散点图示例")
es.add("effectScatter", v1, v2)
es.render()
es = EffectScatter("动态散点图各种图形示例")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render()

2|3Funnel(漏斗图)

from pyecharts import Funnel

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
funnel = Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel.render()

2|4Gauge(仪表盘)

from pyecharts import Gauge

gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()

2|5Geo(地理坐标系)

from pyecharts import Geo

data = [
("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25)...]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], visual_text_color="#fff", symbol_size=15, is_visualmap=True)
geo.show_config()
geo.render()
from pyecharts import Geo

data = [("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.show_config()
geo.render()

2|6Graph(关系图)

from pyecharts import Graph

nodes = [{"name": "结点1", "symbolSize": 10},
{"name": "结点2", "symbolSize": 20},
{"name": "结点3", "symbolSize": 30},
{"name": "结点4", "symbolSize": 40},
{"name": "结点5", "symbolSize": 50},
{"name": "结点6", "symbolSize": 40},
{"name": "结点7", "symbolSize": 30},
{"name": "结点8", "symbolSize": 20}]
links = []
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph = Graph("关系图-环形布局示例")
graph.add("", nodes, links, is_label_show=True, repulsion=8000, layout='circular', label_text_color=None)
graph.show_config()
graph.render()
from pyecharts import Graph

import json
with open("..\json\weibo.json", "r", encoding="utf-8") as f:
j = json.load(f)
nodes, links, categories, cont, mid, userl = j
graph = Graph("微博转发关系图", width=1200, height=600)
graph.add("", nodes, links, categories, label_pos="right", repulsion=50, is_legend_show=False,
line_curve=0.2, label_text_color=None)
graph.show_config()
graph.render()

2|7Line(折线/面积图)

from pyecharts import Line

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 10, 100]
v2 = [55, 60, 16, 20, 15, 80]
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average"])
line.add("商家B", attr, v2, is_smooth=True, mark_line=["max", "average"])
line.show_config()
line.render()
line = Line("折线图-阶梯图示例")
line.add("商家A", attr, v1, is_step=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-面积图示例")
line.add("商家A", attr, v1, is_fill=True, line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add("商家B", attr, v2, is_fill=True, area_color='#000', area_opacity=0.3, is_smooth=True)
line.show_config()
line.render()


2|8Liquid(水球图)

from pyecharts import Liquid

liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid.show_config()
liquid.render()

from pyecharts import Liquid

liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid.show_config()
liquid.render()

2|9Map(地图)

from pyecharts import Map

value = [20, 190, 253, 77, 65]
attr = ['汕头市', '汕尾市', '揭阳市', '阳江市', '肇庆市']
map = Map("广东地图示例", width=1200, height=600)
map.add("", attr, value, maptype='广东', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
map-2

2|10Parallel(平行坐标系)

from pyecharts import Parallel

c_schema = [
{"dim": 0, "name": "data"},
{"dim": 1, "name": "AQI"},
{"dim": 2, "name": "PM2.5"},
{"dim": 3, "name": "PM10"},
{"dim": 4, "name": "CO"},
{"dim": 5, "name": "NO2"},
{"dim": 6, "name": "CO2"},
{"dim": 7, "name": "等级",
"type": "category", "data": ['优', '良', '轻度污染', '中度污染', '重度污染', '严重污染']}
]
data = [
[1, 91, 45, 125, 0.82, 34, 23, "良"],
[2, 65, 27, 78, 0.86, 45, 29, "良"],
[3, 83, 60, 84, 1.09, 73, 27, "良"],
[4, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[5, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[6, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[7, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[8, 89, 65, 78, 0.86, 51, 26, "良"],
[9, 53, 33, 47, 0.64, 50, 17, "良"],
[10, 80, 55, 80, 1.01, 75, 24, "良"],
[11, 117, 81, 124, 1.03, 45, 24, "轻度污染"],
[12, 99, 71, 142, 1.1, 62, 42, "良"],
[13, 95, 69, 130, 1.28, 74, 50, "良"],
[14, 116, 87, 131, 1.47, 84, 40, "轻度污染"]
]
parallel = Parallel("平行坐标系-用户自定义指示器")
parallel.config(c_schema=c_schema)
parallel.add("parallel", data)
parallel.show_config()
parallel.render()

2|11Pie(饼图)

from pyecharts import Pie

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie.show_config()
pie.render()

from pyecharts import Pie

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
v2 = [19, 21, 32, 20, 20, 33]
pie = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area',
is_legend_show=False, is_label_show=True)
pie.show_config()
pie.render()
 

2|12Polar(极坐标系)

from pyecharts import Polar

radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.show_config()
polar.render()
from pyecharts import Polar

radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barAngle', is_stack=True)
polar.show_config()
polar.render()

2|13Radar(雷达图)

from pyecharts import Radar

schema = [
("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
radar = Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False)
radar.show_config()
radar.render()

value_bj = [
[55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2],
[56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4]...]
value_sh = [
[91, 45, 125, 0.82, 34, 23, 1], [65, 27, 78, 0.86, 45, 29, 2],
[83, 60, 84, 1.09, 73, 27, 3], [109, 81, 121, 1.28, 68, 51, 4]...]
c_schema= [{"name": "AQI", "max": 300, "min": 5},
{"name": "PM2.5", "max": 250, "min": 20},
{"name": "PM10", "max": 300, "min": 5},
{"name": "CO", "max": 5},
{"name": "NO2", "max": 200},
{"name": "SO2", "max": 100}]
radar = Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None)
radar.show_config()
radar.render()
 

2|14Scatter(散点图)

from pyecharts import Scatter

v1 = [10, 20, 30, 40, 50, 60]
v2 = [10, 20, 30, 40, 50, 60]
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render()

from pyecharts import Scatter

scatter = Scatter("散点图示例")
v1, v2 = scatter.draw("../images/pyecharts-0.png")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render()

2|15WordCloud(词云图)

from pyecharts import WordCloud

name = ['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications',
'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp',
'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham',
'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value = [10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555,
550, 462, 366, 360, 282, 273, 265]
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.show_config()
wordcloud.render()

3|0用户自定义

用户还可以自定义结合 Line/Bar 图表

需使用 get_series()custom() 方法

get_series()
""" 获取图表的 series 数据 """ custom(series)
''' 追加自定义图表类型 '''
  • series -> dict

    追加图表类型的 series 数据

先用 get_series() 获取数据,再使用 custom() 将图表结合在一起

from pyecharts import Bar, Line

attr = ['A', 'B', 'C', 'D', 'E', 'F']
v1 = [10, 20, 30, 40, 50, 60]
v2 = [15, 25, 35, 45, 55, 65]
v3 = [38, 28, 58, 48, 78, 68]
bar = Bar("Line - Bar 示例")
bar.add("bar", attr, v1)
line = Line()
line.add("line", v2, v3)
bar.custom(line.get_series())
bar.show_config()
bar.render()

4|0更多示例

用极坐标系画出一个爱心

import math
from pyecharts import Polar data = []
for i in range(101):
theta = i / 100 * 360
r = 5 * (1 + math.sin(theta / 180 * math.pi))
data.append([r, theta])
hour = [i for i in range(1, 25)]
polar = Polar("极坐标系示例", width=1200, height=600)
polar.add("Love", data, angle_data=hour, boundary_gap=False,start_angle=0)
polar.show_config()
polar.render()

用极坐标系画出一朵小花

import math
from pyecharts import Polar data = []
for i in range(361):
t = i / 180 * math.pi
r = math.sin(2 * t) * math.cos(2 * t)
data.append([r, i])
polar = Polar("极坐标系示例", width=1200, height=600)
polar.add("Flower", data, start_angle=0, symbol=None, axis_range=[0, None])
polar.show_config()
polar.render()

还可以给小花涂上颜色

import math
from pyecharts import Polar data = []
for i in range(361):
t = i / 180 * math.pi
r = math.sin(2 * t) * math.cos(2 * t)
data.append([r, i])
polar = Polar("极坐标系示例", width=1200, height=600)
polar.add("Color-Flower", data, start_angle=0, symbol=None, axis_range=[0, None],
area_color="#f71f24", area_opacity=0.6)
polar.show_config()
polar.render()

用散点图画出一个爱心

from pyecharts import Scatter

scatter = Scatter("散点图示例", width=800, height=480)
v1 ,v2 = scatter.draw("../images/love.png")
scatter.add("Love", v1, v2)
scatter.render()

用散点图画出一个火辣的 Bra

from pyecharts import Scatter

scatter = Scatter("散点图示例", width=1000, height=480)
v1 ,v2 = scatter.draw("../images/cup.png")
scatter.add("Cup", v1, v2)
scatter.render()

用散点图画出一个性感的 Bra

from pyecharts import Scatter

scatter = Scatter("散点图示例", width=1000, height=480)
v1 ,v2 = scatter.draw("../images/cup.png")
scatter.add("Cup", v1, v2, label_color=["#000"])
scatter.render()

某地最低温和最高气温折线图

from pyecharts import Line

attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日', ]
line = Line("折线图示例")
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], yaxis_formatter="°C")
line.show_config()
line.render()

饼图嵌套

from pyecharts import Pie

pie = Pie("饼图示例", title_pos='center', width=1000, height=600)
pie.add("", ['A', 'B', 'C', 'D', 'E', 'F'], [335, 321, 234, 135, 251, 148], radius=[40, 55],is_label_show=True)
pie.add("", ['H', 'I', 'J'], [335, 679, 204], radius=[0, 30], legend_orient='vertical', legend_pos='left')
pie.show_config()
pie.render()

饼图再嵌套

import random
from pyecharts import Pie attr = ['A', 'B', 'C', 'D', 'E', 'F']
pie = Pie("饼图示例", width=1000, height=600)
pie.add("", attr, [random.randint(0, 100) for _ in range(6)], radius=[50, 55], center=[25, 50],is_random=True)
pie.add("", attr, [random.randint(20, 100) for _ in range(6)], radius=[0, 45], center=[25, 50],rosetype='area')
pie.add("", attr, [random.randint(0, 100) for _ in range(6)], radius=[50, 55], center=[65, 50],is_random=True)
pie.add("", attr, [random.randint(20, 100) for _ in range(6)], radius=[0, 45], center=[65, 50],rosetype='radius')
pie.show_config()
pie.render()

某地的降水量和蒸发量柱状图

from pyecharts import Bar

attr = ["{}月".format(i) for i in range(1, 13)]
v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar = Bar("柱状图示例")
bar.add("蒸发量", attr, v1, mark_line=["average"], mark_point=["max", "min"])
bar.add("降水量", attr, v2, mark_line=["average"], mark_point=["max", "min"])
bar.show_config()
bar.render()

各类电影中"好片"所占的比例

from pyecharts import Pie

pie = Pie('各类电影中"好片"所占的比例', "数据来着豆瓣", title_pos='center')
pie.add("", ["剧情", ""], [25, 75], center=[10, 30], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None, )
pie.add("", ["奇幻", ""], [24, 76], center=[30, 30], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None, legend_pos='left')
pie.add("", ["爱情", ""], [14, 86], center=[50, 30], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["惊悚", ""], [11, 89], center=[70, 30], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["冒险", ""], [27, 73], center=[90, 30], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["动作", ""], [15, 85], center=[10, 70], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["喜剧", ""], [54, 46], center=[30, 70], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["科幻", ""], [26, 74], center=[50, 70], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["悬疑", ""], [25, 75], center=[70, 70], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["犯罪", ""], [28, 72], center=[90, 70], radius=[18, 24],
label_pos='center', is_label_show=True, label_text_color=None, is_legend_show=True, legend_top="center")
pie.show_config()
pie.render()

用极坐标系画出一个蜗牛壳

import math
from pyecharts import Polar data = []
for i in range(5):
for j in range(101):
theta = j / 100 * 360
alpha = i * 360 + theta
r = math.pow(math.e, 0.003 * alpha)
data.append([r, theta])
polar = Polar("极坐标系示例")
polar.add("", data, symbol_size=0, symbol='circle', start_angle=-25, is_radiusaxis_show=False,
area_color="#f3c5b3", area_opacity=0.5, is_angleaxis_show=False)
polar.show_config()
polar.render()
 

pychars的使用的更多相关文章

随机推荐

  1. MySQL 更新数据 不同条件(批量)更新不同值

    一般在更新时会遇到以下场景:1.全部更新:2.根据条件更新字段中的某部分内容:3.根据不同的条件更新不同的值,以下是几种场景中常用的update方法. 一.方法分类 二.具体用法 (1)根据条件更新值 ...

  2. Vue3+TypeScript 项目中,配置 ESLint 和 Prettier

    接上篇:从0搭建vite-vue3-ts项目框架:配置less+svg+pinia+vant+axios 文档同步项目gitee:https://gitee.com/lixin_ajax/vue3-v ...

  3. WPF中使用WebView2控件

    目录 WebView2简介 概述 优势 支持的运行时平台 进程模型 基本使用 安装WebView2运行时 安装WebView2Sdk 打开一个网页 导航事件 打开一个网页的过程 更改url的过程 空u ...

  4. Node.js学习笔记----day05 (Promise详情)

    认真学习,认真记录,每天都要有进步呀!!! 加油叭!!! 一.回调函数 回调的含义:异步任务里面又嵌套了异步 如图: 没有使用回调之前读取文件,没有办法保证每次执行顺序都是 a--->b---& ...

  5. Python求取文件夹内的文件数量、子文件夹内的文件数量

      本文介绍基于Python语言,统计文件夹中文件数量:若其含有子文件夹,还将对各子文件夹中的文件数量一并进行统计的方法.   最近,需要统计多个文件夹内部的文件数量,包括其中所含子文件夹中的文件数量 ...

  6. 11月17日内容总结——黏包现象、struct模块和解决黏包问题的流程、UDP协议、并发编程理论、多道程序设计技术及进程理论

    目录 一.黏包现象 什么是黏包 黏包现象产生的原因 二.struct模块及解决黏包问题的流程 struct模块 解决黏包问题初级版本 解决过程中遇到的问题 解决黏包问题终极解决方案 三.粘包代码实战 ...

  7. Vue视频 | 【Vue2 + Vue3 前端教程】完整版

    目前大部分公司还是以vue.react技术为主的,而Vue中还是以Vue2为主流,但不可否认Vue3是未来所必须的且已有这个趋向了 今天给大家介绍一个Vue的教程 里面既有现在主流的Vue2 同时也存 ...

  8. MySQL 版本号排序

    1.业务背景 版本检查接口返回版本号排序时出现如下图所示问题 普通的查询按数字值逐级比较,导致版本号高的排在了后面,这样版本检查根据版本号排序倒排取出来的不是最新的版本号,本文就此问题查询了诸多方法, ...

  9. vue3.0+echart可视化

    vue3.0 + echart可视化 案例1: 案例代码 <template> <div ref="test" style="width:800px;h ...

  10. 如何在Net6.0里配置多版本支持并支持注释说明的Swagger

    一.前言 现在已经进入了微服务的开发时代了,在这个时代,如果有人问你什么是微服务,你说不知道,就有点太丢人了,别人会有异样的眼光看你,俗话说:唾液淹死人.没办法,我们只能去学习新的东西.一提到微服务, ...