OpenCV-Python:IV OpenCV中的图像处理

15 图像阈值

目标
  • 本节你将学到简单阈值,自适应阈值,Otsu’s 二值化等
  • 将要学习的函数有 cv2.threshold,cv2.adaptiveThreshold 等。

15.1 简单阈值

与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:
  • cv2.THRESH_BINARY
  • cv2.THRESH_BINARY_INV
  • cv2.THRESH_TRUNC
  • cv2.THRESH_TOZERO
  • cv2.THRESH_TOZERO_INV
上图摘选自《学习 OpenCV》中文版,其实这些在文档中都有详细介绍了,你也可以直接查看文档。
这个函数有两个返回值,第一个为 retVal,我们后面会解释。第二个就是阈值化之后的结果图像了。

import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread('gradient.png',0)
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV) titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([]) plt.show()

注意:为了同时在一个窗口中显示多个图像,我们使用函数 plt.subplot()。你可以通过查看 Matplotlib 的文档获得更多详细信息。
结果如下:

15.2 自适应阈值

在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。当时这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。
这种方法需要我们指定三个参数,返回值只有一个。
  • Adaptive Method- 指定计算阈值的方法。
  – cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平均值
  – cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域的加权和,权重为一个高斯窗口。
  • Block Size - 邻域大小(用来计算阈值的区域大小)。
  • C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数。
我们使用下面的代码来展示简单阈值与自适应阈值的差别:

import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread('dave.jpg',0)
img = cv2.medianBlur(img,5) ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,11,2)
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2) titles = ['Original Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3] for i in xrange(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

结果:

15.3 Otsu’ ’s 二值化

在第一部分中我们提到过 retVal,当我们使用 Otsu 二值化时会用到它。那么它到底是什么呢?
  在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答案就是不停的尝试。如果是一副双峰图像(简单来说双峰图像是指图像直方图中存在两个峰)呢?我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。简单来说就是对一副双峰图像自动根据其直方图计算出一个阈值。(对于非双峰图像,这种方法得到的结果可能会不理想)。
这里用到到的函数还是 cv2.threshold(),但是需要多传入一个参数(flag):cv2.THRESH_OTSU。这时要把阈值设为 0。然后算法会找到最优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的retVal 值与设定的阈值相等。
  下面的例子中,输入图像是一副带有噪声的图像。第一种方法,我们设127 为全局阈值。第二种方法,我们直接使用 Otsu 二值化。第三种方法,我们首先使用一个 5x5 的高斯核除去噪音,然后再使用 Otsu 二值化。看看噪音去除对结果的影响有多大吧。

import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread('noisy2.png',0) # global thresholding
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) # Otsu's thresholding
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # Otsu's thresholding after Gaussian filtering
blur = cv2.GaussianBlur(img,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # plot all the images and their histograms
images = [img, 0, th1,
img, 0, th2,
blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
'Original Noisy Image','Histogram',"Otsu's Thresholding",
'Gaussian filtered Image','Histogram',"Otsu's Thresholding"] for i in xrange(3):
plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

15.4 Otsu’ ’s 二值化是如何工作的?

在这一部分我们会演示怎样使用 Python 来实现 Otsu 二值化算法,从而告诉大家它是如何工作的。如果你不感兴趣的话可以跳过这一节。因为是双峰图,Otsu 算法就是要找到一个阈值(t), 使得同一类加权方差最小,需要满足下列关系式:

其中:

其实就是在两个峰之间找到一个阈值 t,将这两个峰分开,并且使每一个峰内的方差最小。实现这个算法的 Python 代码如下:

img = cv2.imread('noisy2.png',0)
blur = cv2.GaussianBlur(img,(5,5),0) # find normalized_histogram, and its cumulative distribution function
hist = cv2.calcHist([blur],[0],None,[256],[0,256])
hist_norm = hist.ravel()/hist.max()
Q = hist_norm.cumsum() bins = np.arange(256) fn_min = np.inf
thresh = -1 for i in xrange(1,256):
p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
b1,b2 = np.hsplit(bins,[i]) # weights # finding means and variances
m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2 # calculates the minimization function
fn = v1*q1 + v2*q2
if fn < fn_min:
fn_min = fn
thresh = i # find otsu's threshold value with OpenCV function
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
prin(thresh,ret)

(这里有些新的函数,我们会在后面的章节中讲到他们)

更多内容请关注公众号:

[OpenCV-Python] 15 图像阈值的更多相关文章

  1. Opencv python图像处理-图像相似度计算

    一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...

  2. opencv python:图像直方图 histogram

    直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开 ...

  3. opencv python:图像二值化

    import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...

  4. openCV—Python(5)—— 图像几何变换

    一.函数简单介绍 1.warpAffine-图像放射变换(平移.旋转.缩放) 函数原型:warpAffine(src, M, dsize, dst=None, flags=None, borderMo ...

  5. opencv python:图像梯度

    一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...

  6. opencv python:图像金字塔

    图像金字塔原理 expand = 扩大+卷积 拉普拉斯金字塔 PyrDown:降采样 PyrUp:还原 example import cv2 as cv import numpy as np # 图像 ...

  7. opencv+python实现图像锐化

    突然发现网上都是些太繁琐的方法,我就找opencv锐化函数咋这么墨迹. 直接上代码: kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], ...

  8. opencv学习之路(13)、图像阈值化threshold

    一.图像阈值化简介 二.固定阈值 三.自适应阈值 #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat src ...

  9. OpenCV + python 实现人脸检测(基于照片和视频进行检测)

    OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...

  10. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

随机推荐

  1. 002基本的Dos命令

    002基本的Dos命令 1.开启Dos控制台的几种方式 几种打开CMD的方式: 直接在菜单中搜索"命令提示符". Win+R,输入cmd.(推荐) 在任意文件夹下面,按住Shift ...

  2. linux软件安装篇

    nginx篇 第一件事情 cd /etc/yum.repo.d mv CentOS-Base.repo CentOS-Base.repo.bak wget -O CentOS-Base.repo ht ...

  3. MySQLdb安装

    yum seach MySQL-Python sudo yum install MySQL-python.x86_64 import MySQLdb

  4. Windows软件堆栈溢出(stack overflow)的一些解决方法

    欢迎访问我的个人博客:xie-kang.com 原文地址 Windows平台下,有三种方法调整堆栈大小(适用于MSVC编译器): 1)添加编译参数:/F size  #其中size的单位是byte可设 ...

  5. EL表达式 总结

    EL表达式,全称是Expression Language.意为表达式语言.它是Servlet规范中的一部分,是JSP2.0规范加入的内容.其作用是用于在JSP页面中获取数据,从而让我们的JSP脱离ja ...

  6. html、css、js 压缩或混淆方法

    普通的压缩代码的方法包括在线工具和服务器打包处理,有一个共同的痛点是:压缩后的代码无法还原成原始的带有注释的源代码.正如大家所知,在源代码中调试Bug事半功倍.在线工具HCJCompress(ihon ...

  7. FinOps首次超越安全成为企业头等大事丨云计算趋势报告

    随着云计算在过去十年中的广泛应用,云计算用户所面临的一个持续不变的趋势是:安全一直是用户面临的首要挑战.然而,这种情况正在发生转变. 知名IT软件企业 Flexera 对云计算决策者进行年度调研已经持 ...

  8. DVWA-SQL Injection(SQL注入)

    sql注入是典型.常见的Web漏洞之一,现在在网络中也可能存在,不过大多数为SQL盲注. 攻击者通过恶意的SQL语句来破坏SQL查询语句,达到数据库泄露的目的 LOW 审计源码 <?php // ...

  9. 使用Net将HTML简历导出为PDF格式

    现在有许多将HTML导出PDF的第三方包,这里介绍使用的是Select.HtmlToPdf.NetCore 使用Select.HtmlToPdf.NetCore 整体思路是将cshtml内容读出来,然 ...

  10. GPT接入企微应用 - 让工作快乐起来

    引子 最近最火的莫过于ChatGPT了,在自己体验后就想着如何其他同事也能方便的起起来,毕竟独乐乐不如众乐乐,自己注册又是V-P-N,又是国外手机验证,对于大部分同事来说门槛还是高的.现在也有不少小程 ...