[OpenCV-Python] 15 图像阈值
文章目录
OpenCV-Python:IV OpenCV中的图像处理
15 图像阈值
目标
• 本节你将学到简单阈值,自适应阈值,Otsu’s 二值化等
• 将要学习的函数有 cv2.threshold,cv2.adaptiveThreshold 等。
15.1 简单阈值
与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:
• cv2.THRESH_BINARY
• cv2.THRESH_BINARY_INV
• cv2.THRESH_TRUNC
• cv2.THRESH_TOZERO
• cv2.THRESH_TOZERO_INV
上图摘选自《学习 OpenCV》中文版,其实这些在文档中都有详细介绍了,你也可以直接查看文档。
这个函数有两个返回值,第一个为 retVal,我们后面会解释。第二个就是阈值化之后的结果图像了。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('gradient.png',0)
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
注意:为了同时在一个窗口中显示多个图像,我们使用函数 plt.subplot()。你可以通过查看 Matplotlib 的文档获得更多详细信息。
结果如下:

15.2 自适应阈值
在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。当时这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。
这种方法需要我们指定三个参数,返回值只有一个。
• Adaptive Method- 指定计算阈值的方法。
– cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平均值
– cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域的加权和,权重为一个高斯窗口。
• Block Size - 邻域大小(用来计算阈值的区域大小)。
• C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数。
我们使用下面的代码来展示简单阈值与自适应阈值的差别:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('dave.jpg',0)
img = cv2.medianBlur(img,5)
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,11,2)
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2)
titles = ['Original Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in xrange(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
结果:

15.3 Otsu’ ’s 二值化
在第一部分中我们提到过 retVal,当我们使用 Otsu 二值化时会用到它。那么它到底是什么呢?
在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答案就是不停的尝试。如果是一副双峰图像(简单来说双峰图像是指图像直方图中存在两个峰)呢?我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。简单来说就是对一副双峰图像自动根据其直方图计算出一个阈值。(对于非双峰图像,这种方法得到的结果可能会不理想)。
这里用到到的函数还是 cv2.threshold(),但是需要多传入一个参数(flag):cv2.THRESH_OTSU。这时要把阈值设为 0。然后算法会找到最优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的retVal 值与设定的阈值相等。
下面的例子中,输入图像是一副带有噪声的图像。第一种方法,我们设127 为全局阈值。第二种方法,我们直接使用 Otsu 二值化。第三种方法,我们首先使用一个 5x5 的高斯核除去噪音,然后再使用 Otsu 二值化。看看噪音去除对结果的影响有多大吧。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('noisy2.png',0)
# global thresholding
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Otsu's thresholding after Gaussian filtering
blur = cv2.GaussianBlur(img,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# plot all the images and their histograms
images = [img, 0, th1,
img, 0, th2,
blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
'Original Noisy Image','Histogram',"Otsu's Thresholding",
'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
for i in xrange(3):
plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

15.4 Otsu’ ’s 二值化是如何工作的?
在这一部分我们会演示怎样使用 Python 来实现 Otsu 二值化算法,从而告诉大家它是如何工作的。如果你不感兴趣的话可以跳过这一节。因为是双峰图,Otsu 算法就是要找到一个阈值(t), 使得同一类加权方差最小,需要满足下列关系式:

其中:

其实就是在两个峰之间找到一个阈值 t,将这两个峰分开,并且使每一个峰内的方差最小。实现这个算法的 Python 代码如下:
img = cv2.imread('noisy2.png',0)
blur = cv2.GaussianBlur(img,(5,5),0)
# find normalized_histogram, and its cumulative distribution function
hist = cv2.calcHist([blur],[0],None,[256],[0,256])
hist_norm = hist.ravel()/hist.max()
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
thresh = -1
for i in xrange(1,256):
p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
b1,b2 = np.hsplit(bins,[i]) # weights
# finding means and variances
m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2
# calculates the minimization function
fn = v1*q1 + v2*q2
if fn < fn_min:
fn_min = fn
thresh = i
# find otsu's threshold value with OpenCV function
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
prin(thresh,ret)
(这里有些新的函数,我们会在后面的章节中讲到他们)
更多内容请关注公众号:

[OpenCV-Python] 15 图像阈值的更多相关文章
- Opencv python图像处理-图像相似度计算
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...
- opencv python:图像直方图 histogram
直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开 ...
- opencv python:图像二值化
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...
- openCV—Python(5)—— 图像几何变换
一.函数简单介绍 1.warpAffine-图像放射变换(平移.旋转.缩放) 函数原型:warpAffine(src, M, dsize, dst=None, flags=None, borderMo ...
- opencv python:图像梯度
一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...
- opencv python:图像金字塔
图像金字塔原理 expand = 扩大+卷积 拉普拉斯金字塔 PyrDown:降采样 PyrUp:还原 example import cv2 as cv import numpy as np # 图像 ...
- opencv+python实现图像锐化
突然发现网上都是些太繁琐的方法,我就找opencv锐化函数咋这么墨迹. 直接上代码: kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], ...
- opencv学习之路(13)、图像阈值化threshold
一.图像阈值化简介 二.固定阈值 三.自适应阈值 #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat src ...
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- [python-opencv]图像二值化【图像阈值】
图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...
随机推荐
- Eclipse's Content Assist
在Eclipse里面的辅助智能索引只有"."才会提示,或者手动按alt+/补全提示.因为Eclipse的补全功能的默认设置只有".",其实你只需要稍微修改一下就 ...
- Linux Broadcom Bluetooth BCM43142A0 蓝牙驱动安装
Linux Broadcom Bluetooth BCM43142A0 蓝牙驱动安装 想转到Linux,奈何蓝牙鼠标不识别. 经历了4个发行版的努力(Linux Mint,Pop!OS,OpenSus ...
- mininet配置命令
Mininet实验手册 一.安装 1. 直接使用带有完整软件的VM(略) 2. 源码安装 1) 下载 git clone git://github.com/mininet/mininet 2) ...
- 华大单片机HC32L13X软件设计时候要注意的事项
1.系统启动时默认设置主频为内部4MHz; 2.调试超低功耗程序或者把SWD端口复用为GPIO功能都会把芯片的SWD功能关掉,仿真器将会与芯片失去连接,建议在main函数开始后加上1到2秒的延时,仿真 ...
- Java面向对象 --2
22.面向对象特征之二: 继 承 2020-04-29 21:39:33 01.多个类中存在相同属性和行为时,将这些内容抽取到单独一个类中,那么子类无需再定义这些属性和行为,只要继承父类即 ...
- Unity安卓端文件写在外部设置
- BaseMapperX
package cn.iocoder.yudao.framework.mybatis.core.mapper; import cn.iocoder.yudao.framework.common.poj ...
- [WinUI 3] 如何利用D3D11在SwapChainPanel控件上绘制OpenGL(Uwp通用)
预览 技术实现 看过我上篇在 WPF 中实现 OpenGL 与 D3D 渲染的同学应该知道,我是依靠 WGL 中 WGL_NV_DX_interop 扩展与 D3D Surface 关联并在使用该 S ...
- NGINX配置SSL支持
前言 在文章-腾讯云申请免费SSL证书中, 我们已经申请好了SSL证书. 那么现在, 我们就要配置全站SSL了! 这次的工作主要是NGINX的配置, 同时会有一些我的博客本身的配置. 博客本身配置更改 ...
- Jan Ozer:高清直播互动场景下的硬编码如何选型?
前言 高清直播逐渐普及,硬编码也成为大势所趋.在 RTE 2022 大会上,来自 NETINT 的 Jan Ozer 通过一系列的对比测试结果,详细分享了如何为高清直播互动场景进行硬编码的技术选型. ...