P4047 [JSOI2010]部落划分 方法记录
[JSOI2010]部落划分
题目描述
聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗。只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的。
不过好消息是,聪聪得到了一份荒岛的地图。地图上标注了 \(n\) 个野人居住的地点(可以看作是平面上的坐标)。我们知道,同一个部落的野人总是生活在附近。我们把两个部落的距离,定义为部落中距离最近的那两个居住点的距离。聪聪还获得了一个有意义的信息——这些野人总共被分为了 \(k\) 个部落!这真是个好消息。聪聪希望从这些信息里挖掘出所有部落的详细信息。他正在尝试这样一种算法:
对于任意一种部落划分的方法,都能够求出两个部落之间的距离,聪聪希望求出一种部落划分的方法,使靠得最近的两个部落尽可能远离。
例如,下面的左图表示了一个好的划分,而右图则不是。请你编程帮助聪聪解决这个难题。

输入格式
输入文件第一行包含两个整数 \(n\) 和 \(k\),分别代表了野人居住点的数量和部落的数量。
接下来 \(n\) 行,每行包含两个整数 \(x\),\(y\),描述了一个居住点的坐标。
输出格式
输出一行一个实数,为最优划分时,最近的两个部落的距离,精确到小数点后两位。
样例 #1
样例输入 #1
4 2
0 0
0 1
1 1
1 0
样例输出 #1
1.00
样例 #2
样例输入 #2
9 3
2 2
2 3
3 2
3 3
3 5
3 6
4 6
6 2
6 3
样例输出 #2
2.00
提示
数据规模与约定
对于 \(100\%\) 的数据,保证 \(2 \leq k \leq n \leq 10^3\),\(0 \leq x, y \leq 10^4\)。
推荐去看看这篇博客
下面是我的理解(以样例2为例)

解释
红线描绘出的是“最小生成树”的路径,旁边标的数字为两个居住点之间的路径长度,同一个色块覆盖的为一个部落。(最小生成树的画法不一定唯一,但对答案不影响)
可以看出来这道题使用了贪心的想法:即让小边尽量在一个部落中,让长边暴露在部落覆盖范围外。
且,由题目中“靠得最近的两个部落尽可能远离”可知,应当在最小生成树的基础上进行操作。
又由题知:n个居住点,k个部落,那么部落中的边数=\((n-1)-(k-1)\)。对所有的边从小到大排序,则第\((n-1)-(k-1)+1\)即第\(n-k+1\)条边为首条暴露在部落覆盖范围外的边,即我们所求的“靠得最近的两个部落之间的距离”。
以下为AC代码。为了方便理解,变量名与《算法竞赛进阶指南》P364 Kruskal模板统一。
点击查看代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1000005;
struct rec
{
int u,v;
double dis;
}edge[N];
int fa[N],n,m,cnt;
bool operator < (rec a,rec b)
{
return a.dis<b.dis;
}
int get(int x)
{
if(x==fa[x]) return x;
return fa[x]=get(fa[x]);
}
double a[N];
int x[N],y[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x[i],&y[i]);
fa[i]=i;
}
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
{
cnt++;
edge[cnt].u=i;
edge[cnt].v=j;
edge[cnt].dis=(double)sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));//计算距离
}
sort(edge+1,edge+cnt+1);
int i=1,j=0;
while(j<n-1)
{
int fu=get(edge[i].u);
int fv=get(edge[i].v);
double dis=edge[i].dis;
if(fu!=fv)
{
fa[fu]=fv;
j++;
a[j]=dis;
}
i++;
}
printf("%.2lf",a[n-m+1]);
return 0;
}
参考
https://www.luogu.com.cn/blog/wyz598085788/solution-p4047
P4047 [JSOI2010]部落划分 方法记录的更多相关文章
- 洛谷P4047 [JSOI2010]部落划分题解
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...
- P4047 [JSOI2010]部落划分(最小生成树)
题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成为谜团了——聪 ...
- P4047 [JSOI2010]部落划分
显然二分答案\(mid\),然后距离\(\leq mid\)的点对只能放在一个部落里.然后可以并查集\(O(n^2)\)算出有多少个部落. // luogu-judger-enable-o2 #inc ...
- P4047 [JSOI2010]部落划分 并查集
思路:并查集+生成树 提交:2次(虽然样例都没过但感觉是对的$QwQ$(判边少了一条)) 题解: 把所有点之间连边,然后$sort$一遍,从小往大加边,直到连第$n-k+1$条边(相当于是破话$k$个 ...
- 洛谷 P4047 [JSOI2010]部落划分
这道题其实就是无线通讯网的双倍经验啦,只是在输出的时候不同罢了.还是一样的\(kruskal\)算法,但是在求的时候,应该在\(now=n-k+1\)的时候结束.本来到\(n-k\)就行了的,但是由于 ...
- 【BZOJ1821】[JSOI2010]部落划分(二分,并查集)
[BZOJ1821][JSOI2010]部落划分(二分,并查集) 题面 BZOJ 洛谷 题解 二分答案,把距离小于二分值的点全部并起来,\(\mbox{check}\)一下是否有超过\(K\)个集合就 ...
- 题解 洛谷 P4047 【[JSOI2010]部落划分】
我觉得几乎就是一道最小生成树模板啊... 题解里许多大佬都说选第n-k+1条边,可我觉得要这么讲比较容易理解 (虚边为能选的边,实边为最小生成树) 令n=5,k=2,(1,3)<(1,2)< ...
- BZOJ 1821 JSOI2010 部落划分 Group prim
Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成 ...
- BZOJ1821:[JSOI2010]部落划分(并查集,二分)
Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成 ...
随机推荐
- css基础03
就近原则执行粉色.而不是全覆盖,只有样式冲突的地方才会覆盖. 会执行粉色和12px.后来者居上 高度宽度内外边距这些不会继承. 子元素会继承行高, 1.5是行高是字体大小的1.5倍的意思. 有了!im ...
- Golang 汇编asm语言基础学习
Golang 汇编asm语言基础学习 一.CPU 基础知识 cpu 内部结构 cpu 内部主要是由寄存器.控制器.运算器和时钟四个部分组成. 寄存器:用来暂时存放指令.数据等对象.它是一个更快的内存. ...
- 从 React 原理来看 ahooks 是怎么解决 React 的闭包问题的?
本文是深入浅出 ahooks 源码系列文章的第三篇,该系列已整理成文档-地址.觉得还不错,给个 star 支持一下哈,Thanks. 本文来探索一下 ahooks 是怎么解决 React 的闭包问题的 ...
- LOJ2312 LUOGU-P3733「HAOI2017」八纵八横 (异或线性基、生成树、线段树分治)
八纵八横 题目描述 Anihc国有n个城市,这n个城市从1~n编号,1号城市为首都.城市间初始时有m条高速公路,每条高速公路都有一个非负整数的经济影响因子,每条高速公路的两端都是城市(可能两端是同一个 ...
- HTML引用CSS实现自适应背景图
链接图片背景代码 body {background: url('链接') no-repeat center 0;} 颜色代码 body{background:#FFF} 链接图片背景代码2 <b ...
- Filter中的FilterChain.doFilter(req,resp)的报错解决
服务器内部错误:500 Request processing failed; nested exception is java.lang.IllegalStateException: 提交响应后无法调 ...
- Sentinel控制台1.8.3修改源码,修改配置后推送到Nacos
目录 1. 接着上一篇 2. 思路 3. 下载Sentinel源码 4. 看Gateway里面读取的配置信息 5. 修改Sentinel控制台源码 6. 熔断规则测试 7. 限流规则测试 8. 打包使 ...
- 【读书笔记】C#高级编程 第二章 核心C#
(一)第一个C#程序 创建一个控制台应用程序,然后输入代码,输入完毕后点击F5 Console.WriteLine();这条语句的意思:把括号内的内容输出到界面上: Console.ReadKey() ...
- 基于 Gitea 服务端渲染的 Jupyter Notebooks
本指南将向您展示如何通过配置外部渲染器来使 Gitea 呈现 Jupyter Notebooks.当然,你还可以根据本指南来为你的 Gitea 实例配置其他类型的文档渲染器,甚至是二进制文件!相信Gi ...
- java的数据类型分为两大类
java的数据类型分为两大类 基本类型(primitive type) 数据类型 整数类型 byte占一个字节范围:-128-127 short占两个字节范围:-32768-32767 int占四个字 ...