B - Layer Cake

Time Limit:6000MS     Memory Limit:524288KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Dasha decided to bake a big and tasty layer cake. In order to do that she went shopping and bought n rectangular cake layers. The length and the width of the i-th cake layer were ai and bi respectively, while the height of each cake layer was equal to one.

From a cooking book Dasha learned that a cake must have a form of a rectangular parallelepiped constructed from cake layers of the same sizes.

Dasha decided to bake the biggest possible cake from the bought cake layers (possibly, using only some of them). It means that she wants the volume of the cake to be as big as possible. To reach this goal, Dasha can cut rectangular pieces out of the bought cake layers. She always cuts cake layers in such a way that cutting lines are parallel to the edges of that cake layer. Dasha isn't very good at geometry, so after cutting out a piece from the original cake layer, she throws away the remaining part of it. Also she can rotate a cake layer in the horizontal plane (swap its width and length).

Dasha wants her cake to be constructed as a stack of cake layers of the same sizes. Each layer of the resulting cake should be made out of only one cake layer (the original one or cut out from the original cake layer).

Help Dasha to calculate the maximum possible volume of the cake she can bake using given cake layers.

Input

The first line contains an integer n(1 ≤ n ≤ 4000) — the number of cake layers that Dasha can use.

Each of the following n lines contains two integer numbers ai and bi(1 ≤ ai, bi ≤ 106) — the length and the width of i-th cake layer respectively.

Output

The first line of the output should contain the maximum volume of cake that can be baked using given layers.

The second line of the output should contain the length and the width of the resulting cake. If there are many solutions with maximum possible volume, print any of them.

Sample Input

Input
5 12
1 1
4 6
6 4
4 6
Output
6 4
Input
100001 900000
900001 100000
Output
900000 100000

Hint

In the first example Dasha doesn't use the second cake layer. She cuts 4 × 6 rectangle from the first cake layer and she uses other cake layers as is.

In the second example Dasha cuts off slightly from the both cake layers.

题意:给你n个矩形n(1 ≤ n ≤ 4000) ,矩形可以削减,从中选出k个,(可以)削减后,保证k个矩形面积一样,求k*矩形面积的最大值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=20000+10; int n,b[maxn];
struct node{
int x,y;
bool operator<(const node &a) const
{return this->x<a.x;}
}ne[maxn]; int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d %d",&ne[i].x,&ne[i].y);
if(ne[i].x>ne[i].y) swap(ne[i].x,ne[i].y);
}
sort(ne+1,ne+n+1);
int l,w,cnt=0;ll ans=0;
for(int i=n;i>=1;i--)
{
b[++cnt]=ne[i].y;
sort(b+1,b+cnt+1);
for(int j=1;j<=cnt;j++)
if(ans<((ll)ne[i].x)*b[j]*(cnt-j+1))
{
ans=((ll)ne[i].x)*b[j]*(cnt-j+1);
l=ne[i].x;
w=b[j];
}
}
if(l<w) swap(l,w);
printf("%lld\n%d %d\n",ans,l,w);
}
return 0;
}

比赛分析:

比赛时想到了需要枚举所有的边的组合(n^2),然后还想到了应该算出这种组合下的矩形的个数(O(n)),但是这样

复杂度是n^3啊,显然需要降低,然后就一直在纠结着怎么用二分求出矩形个数,,,但是二分出来时错的,因为虽然是先按x排序,再

按y排序,那么当二分出来一个点后,很可能x比该点大的点的y值不满足条件,那么这个点就不能计入.......

纠错:

我们先将x排好序后,然后从大到小枚举x(O(n)),将所有x>=当前枚举的x的点的y值从小到大排排序(nlogn),然后再

排好序的y上进行枚举,其实就是通过两次排序筛选出x'>=x,y'>=y的值得矩形个数

#7 div2 B Layer Cake 造蛋糕 智商题+1的更多相关文章

  1. 2015-2016 ACM-ICPC, NEERC, Southern Subregional Contest, B. Layer Cake

    Description Dasha decided to bake a big and tasty layer cake. In order to do that she went shopping ...

  2. Layer Cake cf

    Layer Cake time limit per test 6 seconds memory limit per test 512 megabytes input standard input ou ...

  3. CodeForces 589B Layer Cake (暴力)

    题意:给定 n 个矩形是a*b的,问你把每一块都分成一样的,然后全放一块,高度都是1,体积最大是多少. 析:这个题,当时并没有完全读懂题意,而且也不怎么会做,没想到就是一个暴力,先排序,先从大的开始选 ...

  4. TTTTTTTTTTTTTTTTTTT CF 银行转账 图论 智商题

    C. Money Transfers time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  5. bzoj 1318: [Spoj744] Longest Permutation 智商题

    1318: [Spoj744] Longest Permutation Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 361  Solved: 215 ...

  6. zoj 3647 智商题

    此题就是求格点中三角形的个数. 就是找出三点不共线的个数. n*m的矩形中有(n+1)*(m+1)个格点. 选出三个点的总个数为:C((n+1)*(m+1),3). 减掉共线的情况就是答案了. 首先是 ...

  7. 【20181102T2】飞越行星带【智商题+最小瓶颈路】

    题面 [正解] 一眼不可做啊 --相当于求路线上穿过的点最小距离最大 最小最大--二分啊 现在相当于给一个直径,要判断这个直径是否能从左边穿到右边 我们可以在距离不超过直径的点连一条边,\(y=0\) ...

  8. codeforces round 472(DIV2)D Riverside Curio题解(思维题)

    题目传送门:http://codeforces.com/contest/957/problem/D 题意大致是这样的:有一个水池,每天都有一个水位(一个整数).每天都会在这一天的水位上划线(如果这个水 ...

  9. agc016C - +/- Rectangle(构造 智商题)

    题意 题目链接 Sol 我的思路:直接按样例一的方法构造,若$h \times w$完全被$N \times M$包含显然无解 emm,wa了一发之后发现有反例:1 4 1 3 我的会输出[1 1 - ...

随机推荐

  1. 模仿ORM

    ORM 对象关系映射 类 ---------->映射--------->    表 对象 ------>映射---------->   一条记录 对象点属性 --->映射 ...

  2. http请求之of_ordering_getmiditem

    //Public function of_ordering_getmiditem (string as_instr,string as_key) returns string //string as_ ...

  3. Spring Boot源码分析-启动过程

    Spring Boot作为目前最流行的Java开发框架,秉承"约定优于配置"原则,大大简化了Spring MVC繁琐的XML文件配置,基本实现零配置启动项目. 本文基于Spring ...

  4. 项目实践 hrm项目的设计过程

    人事管理系统的设计过程 一.数据库表和持久化类 1.1   进行需求分析,根据功能模块设计数据库表 1.2   设计持久化实体 面向对象分析,即根据系统需求提取出应用中的对象,将这些对象抽象成类,再抽 ...

  5. 怎样理解 Vue 中的 v-if 和 v-show ?

    1. v-if 实现了真正的 条件渲染, 条件为真时, 节点被创建, 相应的监听函数也会生效, 条件为假时, 节点被销毁, 触发事件监听函数不会生效. 而 v-show 只是使用了 display:n ...

  6. JS downLoad

    $.fileDownload(url, { httpMethod: 'GET', data: null, prepareCallback: function (url) { layer.msg(&qu ...

  7. kali入侵服务器之后清除痕迹

    Linux清除痕迹 第一种方法: 在退出会话前直接执行: #history -r 清除当前会话的命令历史记录 第二种方法: 在vim中执行自己不想让别人看到的命令随便用vim打开一个文件 :set h ...

  8. Presto基础知识

    背景 MapReduce不能满足大数据快速实时adhoc查询计算的性能要求. Facebook的数据仓库存储在少量大型Hadoop/HDFS集群.Hive是Facebook在几年前专为Hadoop打造 ...

  9. 第一章·ELKstack介绍及Elasticsearch部署

    一.ELKstack课程大纲  二.ELKstack简介 什么是ELK? 通俗来讲,ELK是由Elasticsearch.Logstash.Kibana 三个开源软件的组成的一个组合体,这三个软件当 ...

  10. STM32 HSE模式配(旁路模式、非旁路模式)

    1.外部晶体/陶瓷谐振器(HSE晶体)模式 这种模式用得比较常见,HSE晶体可以为系统提供较为精确的时钟源.在时钟控制寄存器RCC_CR中的HSERDY位用来指示高速外部振荡器是否稳定.在启动时,直到 ...