【51nod 1340】地铁环线
题目
有一个地铁环线,环线中有N个站台,标号为0,1,2,...,N-1。这个环线是单行线,一共由N条有向边构成,即从0到1,1到2,..k到k+1,...,N-2到N-1,N-1到0各有一条边。定义两站之间的距离,站a与站b间的距离dis(a,b)指从a站出发沿着单行线的边走到达b时所经过的全部长度,即dis(a,b)=dis(a,a+1)+dis(a+1,a+2)+..+dis(k,k+1 mod N)..+dis(b-1,b)。提示一下,a>b时路径为a->a+1->...N-1->0->...->b,注意这是个环线。有两个人向你提供了一些关于环线的信息:
其第一个人提供了M1条信息,每条信息:站点Ai到站点Bi的距离至少是Di,即dis(Ai,Bi)>=Di;
而第二个人提供了M2条信息,每条信息:站点ai到站点 bi的距离最多是di ,即dis(ai,bi)<=di 。
另外,已知相邻两站的距离至少是1公里,且所有站点间的距离都是整数公里。
请根据以上的信息计算这条地铁环线的总长有多少种可能,并输出这个数量,如果如果有长度有无数种可能输出-1.
分析
看到一堆不等式的信息,首先想到就是差分约束,
当总长度s确定时,我们就可以做差分约束,判断有无负环来判断是否合法
连边
对于dis(Ai,Bi)>=Di,
如果Ai<Bi,Bi向Ai连一条的边,边权为-Di
如果Ai>Bi,Bi向Ai连一条的边,边权为s-Di
对于dis(ai,bi)<=di,
如果ai<bi,ai向bi连一条的边,边权为Di
如果ai>bi,ai向bi连一条的边,边权为-s+Di
相邻点距离至少为1,类似第一种情况
然后用Bellman_Ford,在进行n-1次松弛操作后,
如果依然可以进行松弛操作,即存在边(a,b),dis[a]+v(a,b)<dis[b],就存在负环,则不合法。
反之。
考虑如何求方案数,
我们发现每条边的边权个一次函数,
进行n-1次松弛操作,于是对于每个点的每种s的系数k记录\(dis[x][k]\),表示当走到x时,s的系数为k的最小值为\(dis[x][k]\)
然后对于每一条边(a,b)维护一个单调栈,表示每一段s的值域是由s的哪个系数控制(详细见程序)
然后对于一段某一段s的值域的,代入s,如果a点的函数值+(a,b)>b点的函数值,则这一段值域对于这一条边是合法的。用个前缀和数组,这一段值域的合法边数加1.
当一段值域的合法边数为总边数时,这段值域的s都合法,ans加上个数。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
#include <set>
#include <vector>
const int mo=1e9+7;
const int N=55;
using namespace std;
int T,n,m1,m2,tot,num,vv;
long long dis[N][N*2],inf;
struct list
{
long long x,v;
}lis[N*N*N*2];
struct line
{
long long l,r,k,b;
long long f(long long x)
{
return k*x+b;
}
}s1[N*N*N*2],t1[N*N*N*2];
long long min(long long x,long long y)
{
return x<y?x:y;
}
long long max(long long x,long long y)
{
return x>y?x:y;
}
long long up(long long tb,long long tk)
{
if(tk<0) tk=-tk,tb=-tb;
long long tt=tb/tk;
return tt+(tt*tk<tb);
}
long long down(long long tb,long long tk)
{
if(tk<0) tk=-tk,tb=-tb;
long long tt=tb/tk;
return tt-(tt*tk>tb);
}
void push(line *a,int &num,line t)
{
while(num && t.f(a[num].l)<=a[num].f(a[num].l)) num--;
if(num) t.l=down(-(a[num].b-t.b),a[num].k-t.k)+1,a[num].r=t.l-1;
a[++num]=t;
}
void put(long long l,long long r)
{
lis[++num]=(list){l,1};
lis[++num]=(list){r+1,-1};
}
void check(line s1,line t1)
{
long long l=max(s1.l,t1.l),r=min(s1.r,t1.r);
if(l>r) return;
line t={0,0,s1.k-t1.k,s1.b-t1.b};
if(t.f(l)<0 && t.f(r)<0) return;
put(t.f(l)>=0?l:up(-t.b,t.k),t.f(r)>=0?r:down(-t.b,t.k));
}
struct edge
{
long long x,y,v,k;
void BF()
{
for(int i=0;i<=2*n;i++)
if(i+k>=0 && i+k<=2*n) dis[y][i+k]=min(dis[y][i+k],dis[x][i]+v);
}
void calc()
{
int n1=0,n2=0;
for(int i=2*n;i>=0;i--)
{
if(dis[x][i]<inf/2) push(s1,n1,(line){n,inf,i+k-n,dis[x][i]+v});
if(dis[y][i]<inf/2) push(t1,n2,(line){n,inf,i-n,dis[y][i]});
}
for(int k1=1,k2=1;k1<=n1 && k2<=n2;s1[k1].r<=t1[k2].r?k1++:k2++) check(s1[k1],t1[k2]);
}
}E[N<<2];
bool cmp(list x,list y)
{
return x.x<y.x;
}
int main()
{
for(scanf("%d",&T);T--;)
{
scanf("%d%d%d",&n,&m1,&m2);
memset(dis,1,sizeof(dis));
memset(lis,0,sizeof(lis));
inf=dis[0][0],dis[0][n]=0;
tot=0;
for(int i=0;i<n;i++) E[++tot]=(edge){(i+1)%n,i,-1,i==n-1};
long long x,y,v;
for(int i=1;i<=m1;i++)
{
scanf("%lld%lld%lld",&x,&y,&v);
E[++tot]=(edge){y,x,-v,(x>y)};
}
for(int i=1;i<=m2;i++)
{
scanf("%lld%lld%lld",&x,&y,&v);
E[++tot]=(edge){x,y,v,-(x>y)};
}
for(int i=1;i<n;i++)
for(int j=1;j<=tot;j++) E[j].BF();
for(int i=1;i<=tot;i++) E[i].calc();
sort(lis+1,lis+1+num,cmp);
lis[num+1]=(list){inf+1,0};
long long sum=0,ans=0;
for(int i=1;i<=num;i++) ans+=((sum+=lis[i].v)==tot)*(lis[i+1].x-lis[i].x);
printf("%lld\n",ans>=inf/4?-1:ans);
}
}
【51nod 1340】地铁环线的更多相关文章
- [题解] 51 nod 1340 地铁环线
不难看出这是一道差分约束的题目. 但是如果想按照通常的题目那样去建边的话,就会发现这句话--相邻两站的距离至少是1公里--建边后就直接让整个题出现了负环(默认是按求最短路建边),没法做了. 这时我们就 ...
- 【51nod】1340 地铁环线
今天头非常疼,躲在家里没去机房 反正都要颓废了,然后花了一上午研究了一下这道神题怎么做-- 题解 首先我们发现,如果我们设\(dis[i]\)为从\(0\)节点走到\(i\)节点的距离 那么题目中给出 ...
- 题解 [51nod1340]地铁环线
题解 [51nod1340]地铁环线 题面 解析 本文参考这篇博客 一开始看到只有120行就打算写一写, 结果一刚就是三个星期摆摆摆 本来是当查分约束入门学的. step 1 首先来考虑下如果已知总长 ...
- 51nod1340 地铁环线
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1340 设x为环线的长度,要判断某个特定的x是否可行,不难将题目转为差分约 ...
- 51nod 1340 差分约束
思路: 带未知量的Floyd 很强 http://yousiki.net/index.php/archives/87/ //By SiriusRen #include <bits/stdc++. ...
- 51nod1340地铁环线
经典题. 经典差分约束模型. 但是 显然这个总长是有上下界的. 直接二分总长,判断有没有负环 如果没有负环好办,有负环就不知道怎么偏了. 因为没有单调性! (如果所有没有单调性的函数图像,都知道往哪里 ...
- 【UR #2】跳蚤公路
[UR #2]跳蚤公路 参照yjc方法.也就是地铁环线那个题. 求每个点不在负环内的x的取值范围.然后所有1到j能到i的j的范围取交.得到答案. 每个边形如kx+b的直线,每个环也是 每个点不在负环内 ...
- 【luogu P4005 清华集训2017】小Y和地铁
题目描述 小 Y 是一个爱好旅行的 OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有 换乘站 . ...
- P4005 小 Y 和地铁
题目描述 小 Y 是一个爱好旅行的 OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有 换乘站 . ...
随机推荐
- Visual Studio中Debug与Release以及x86、x64、Any CPU的区别
Visual Studio中Debug与Release的区别: 在Visual Studio中,编译模式有2种:Debug与Release.这也是默认的两种方式,在新建一个project的时候,就已经 ...
- python笔记007-函数
昨日简要: 1.文件操作: 1.1获得句柄: f = open(‘one.txt’,mode=’’,encoding=’utf-8’) f = open(‘../’) à返回上一层 f = open( ...
- 20191011-构建我们公司自己的自动化接口测试框架-Util的TestDataHandler模块
TestDataHandler模块主要是做测试数据的处理,包括转换数据格式和变量参数处理转换数据格式函数: data是数据,data以$()的方式识别变量,如果请求的数据有变量,则将变量用global ...
- C++中如何记录程序运行时间
一.clock()计时函数clock()是C/C++中的计时函数,而与其相关的数据类型是clock_t.在MSDN中,查得对clock函数定义如下:clock_t clock(void) ;简单而言, ...
- scratch少儿编程第一季——05、移动还可以这样动
各位小伙伴大家好: 上期我们学习了怎么控制方向和移动的程序块. 今天我们继续学习运动模块下的其他9个指令(程序块). 首先来看前面两个关于x坐标的程序块. 分别是将x坐标增加()单位,和将x坐标设定为 ...
- 如何知道外围器件的器件地址PHY_ADDR
由于 S5P6818 现有的uboot没有网卡的初始化代码实现,在尝试移植网卡驱动而跟踪有关的源码的时候,不止一次地看到了类似下面的需要修改器件地址的有关写法. 根据原理图的有关硬件连接,找到对应的元 ...
- hdu 6197 array array array LIS
正反跑一次LIS,取最大的长度,如果长度大于n-k就满足条件. ac代码: #include <cstdio> #include <cstring> #include < ...
- hdu 3342 拓扑模板题
直接上代码吧 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...
- Nginx与负载均衡
Nginx,首先是一款轻量级的Web服务器,其特点是占有内存少,并发能力强,大厂用户有:百度.新浪.网易.腾讯等.其次,它是一款反向代理服务器:第三,它还是一款电子邮件(IMAP/POP3)代理服务器 ...
- SpringCloud"灰度部署"——动态刷新网关配置
通过Acutator和SpringCloudConfig完成"灰度部署"——动态刷新网关路由配置 先声明下,我这个可能是冒牌的灰度部署,技术有限,纯粹个人笔记分享. 前段时间接到了 ...