Pandas-高级部分及其实验
有趣的事,Python永远不会缺席!
jupyter代码原文件及数据集提取连接
链接:https://pan.baidu.com/s/1N8sm-qxnErgHCIbKqZTlVQ
提取码:z3jn
- 1 实例:美国各州的统计数据
- 2 实例 行星数据-累计与分组
- 2.1 Pandas的简单累计功能
- 2.2 GroupBy:分割、应用和组合
- 2.2.1 分割、应用、组合
- 2.2.2 GroupBy对象
- 2.2.3 累计、过滤、转换、应用
- 2.2.4 设置分割的键
- 2.2.4.1 将列表、数组、Series或索引作为分组键
- 2.2.4.2 用字典或Series将索引映射到分组名称
- 2.2.4.3 任意Python函数
- 2.2.4.4 多个有效键构成的列表
- 2.2.4.5 分组案例
- 3 数据透视表
- 3.1 演示数据透视表
- 3.2 手工制作数据透视表
- 3.3 数据透视表语法
- 3.3.1 多级透视表
- 3.3.2 其他数据透视表选项
- 4 案例:美国人的生日
- 5 向量化字符串操作
- 5.1 Pandas字符串操作简介
- 5.2 Pandas字符串方法列表
- 6 处理时间序列
- 6.1 Python的使与时间工具
- 6.2 NumPy的datetime64类型
- 6.3 理想与先是最佳解决方案
- 6.4 Pandas时间序列:用时间作索引
- 6.5 pandas时间序列数据结构
- 6.6 时间频率与偏移量
- 7 案例:美国西雅图自行车统计数据的可视化
- 7.1 数据可视化
- 7.2 深入数据挖掘
- 7.2.1 单日内的小时均值流量
- 7.2.2 工作日和双休日每小时的通过量
- 8 高性能Pandas:eval()与query()
- 8.1 用Pandas.eval()实现高性能运算
- 8.1.1 pd.eval()支持的运算
- 8.2 用DataFrame.eval()实现列间运算
- 8.2.1 用DataFrame.eval()新增列
- 8.2.2 DataFrame.eval()使用局部变量
- 8.3 DataFrame.query()方法
Pandas-高级部分及其实验的更多相关文章
- pandas小记:pandas高级功能
http://blog.csdn.net/pipisorry/article/details/53486777 pandas高级功能:面板数据.字符串方法.分类.可视化. 面板数据 {pandas数据 ...
- 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...
- pandas高级操作
pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作 ...
- Pandas之:Pandas高级教程以铁达尼号真实数据为例
Pandas之:Pandas高级教程以铁达尼号真实数据为例 目录 简介 读写文件 DF的选择 选择列数据 选择行数据 同时选择行和列 使用plots作图 使用现有的列创建新的列 进行统计 DF重组 简 ...
- Pandas高级教程之:GroupBy用法
Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...
- 5,pandas高级数据处理
1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True - keep参数:指定保留哪一重复的行 ...
- pandas高级操作总结
1.pandas中的列的分位数 # 查看列的分位数 import pandas as pd # set columns type my_df['col'] = my_df['col'].astype( ...
- Pandas 高级应用 数据分析
深入pandas 数据处理 三个阶段 数据准备 数据转化 数据聚合 数据准备 加载 组装 合并 - pandas.merge() 拼接 - pandas.concat() 组合 - pandas.Da ...
- pandas小程序应用-实验
背景:来自于日常工作,针对医院行政人员统计日常门诊信息,手工统计繁琐.容易出错的问题,结合实际特点,采用python对数据进行自动统计. 具体步骤如下: 1.引入python工具包. import p ...
- Pandas高级教程之:Dataframe的合并
目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...
随机推荐
- 转「服务器运维」如何解决服务器I/O过高的问题
问题缘起: 当我习惯性地用top查看任务运行状态时,发现我运行的100个任务,只有3个在运行,其他都在摸鱼状态.同时发现我的任务进程都是"D"状态(未截图),而不是R(运行)状态. ...
- 十九款web漏洞扫描工具
1. Arachni Arachni是一款基于Ruby框架搭建的高性能安全扫描程序,适用于现代Web应用程序.可用于Mac.Windows及Linux系统的可移植二进制文件. Arachni不仅能对基 ...
- Flutter Navigator&Router(导航与路由)
参考地址:https://www.jianshu.com/p/b9d6ec92926f 在我们Flutter中,页面之间的跳转与数据传递使用的是Navigator.push和Navigator.pop ...
- ES6深入浅出-3 三个点运算 & 新版字符串-1.函数与对象的语法糖
主要讲的内容 时间充裕的话就讲,模板字面量 默认参数值 首先讲es6之前,我们是怎么做的.例如我们要写一个求和的函数, 请两个参数的和,但是如果有的人就是穿一个参数呢? 那么b没有传值,b的值是多少呢 ...
- Python json序列化时default/object_hook指定函数处理
在Python中,json.dumps函数接受参数default用于指定一个函数,该函数能够把自定义类型的对象转换成可序列化的基本类型.json.loads函数接受参数objec_thook用于指定函 ...
- 基于C#在WPF中使用斑马打印机进行打印【转】——不支持XPS的打印机
https://www.cnblogs.com/zhaobl/p/4666002.html
- Swift细节记录<一>
1.全局变量记录: import UIKit class HHTSwitchGlobalData: NSObject { var isWaiterAutoPop: Bool = true privat ...
- 基于libuv的TCP设计(二)
一.本人设想的TCP服务器有如下特性: 1.启动服务,一直监听端口. 2.有新连接(客户端)就通知用户.并把连接接收到的数据回调给用户. 3.客户端连接上后用户可在任意时间发送数据给它. 4.客户端断 ...
- 大师Geoff Hinton关于Deep Neural Networks的建议
大师Geoff Hinton关于Deep Neural Networks的建议 Note: This covers suggestions from Geoff Hinton's talk given ...
- MySQL面试 - 读写分离
MySQL面试 - 读写分离 面试题 你们有没有做 MySQL 读写分离?如何实现 MySQL 的读写分离?MySQL 主从复制原理的是啥?如何解决 MySQL 主从同步的延时问题? 面试官心理分析 ...