Pandas-高级部分及其实验
有趣的事,Python永远不会缺席!
jupyter代码原文件及数据集提取连接
链接:https://pan.baidu.com/s/1N8sm-qxnErgHCIbKqZTlVQ
提取码:z3jn
- 1 实例:美国各州的统计数据
- 2 实例 行星数据-累计与分组
- 2.1 Pandas的简单累计功能
- 2.2 GroupBy:分割、应用和组合
- 2.2.1 分割、应用、组合
- 2.2.2 GroupBy对象
- 2.2.3 累计、过滤、转换、应用
- 2.2.4 设置分割的键
- 2.2.4.1 将列表、数组、Series或索引作为分组键
- 2.2.4.2 用字典或Series将索引映射到分组名称
- 2.2.4.3 任意Python函数
- 2.2.4.4 多个有效键构成的列表
- 2.2.4.5 分组案例
- 3 数据透视表
- 3.1 演示数据透视表
- 3.2 手工制作数据透视表
- 3.3 数据透视表语法
- 3.3.1 多级透视表
- 3.3.2 其他数据透视表选项
- 4 案例:美国人的生日
- 5 向量化字符串操作
- 5.1 Pandas字符串操作简介
- 5.2 Pandas字符串方法列表
- 6 处理时间序列
- 6.1 Python的使与时间工具
- 6.2 NumPy的datetime64类型
- 6.3 理想与先是最佳解决方案
- 6.4 Pandas时间序列:用时间作索引
- 6.5 pandas时间序列数据结构
- 6.6 时间频率与偏移量
- 7 案例:美国西雅图自行车统计数据的可视化
- 7.1 数据可视化
- 7.2 深入数据挖掘
- 7.2.1 单日内的小时均值流量
- 7.2.2 工作日和双休日每小时的通过量
- 8 高性能Pandas:eval()与query()
- 8.1 用Pandas.eval()实现高性能运算
- 8.1.1 pd.eval()支持的运算
- 8.2 用DataFrame.eval()实现列间运算
- 8.2.1 用DataFrame.eval()新增列
- 8.2.2 DataFrame.eval()使用局部变量
- 8.3 DataFrame.query()方法
Pandas-高级部分及其实验的更多相关文章
- pandas小记:pandas高级功能
http://blog.csdn.net/pipisorry/article/details/53486777 pandas高级功能:面板数据.字符串方法.分类.可视化. 面板数据 {pandas数据 ...
- 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...
- pandas高级操作
pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作 ...
- Pandas之:Pandas高级教程以铁达尼号真实数据为例
Pandas之:Pandas高级教程以铁达尼号真实数据为例 目录 简介 读写文件 DF的选择 选择列数据 选择行数据 同时选择行和列 使用plots作图 使用现有的列创建新的列 进行统计 DF重组 简 ...
- Pandas高级教程之:GroupBy用法
Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...
- 5,pandas高级数据处理
1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True - keep参数:指定保留哪一重复的行 ...
- pandas高级操作总结
1.pandas中的列的分位数 # 查看列的分位数 import pandas as pd # set columns type my_df['col'] = my_df['col'].astype( ...
- Pandas 高级应用 数据分析
深入pandas 数据处理 三个阶段 数据准备 数据转化 数据聚合 数据准备 加载 组装 合并 - pandas.merge() 拼接 - pandas.concat() 组合 - pandas.Da ...
- pandas小程序应用-实验
背景:来自于日常工作,针对医院行政人员统计日常门诊信息,手工统计繁琐.容易出错的问题,结合实际特点,采用python对数据进行自动统计. 具体步骤如下: 1.引入python工具包. import p ...
- Pandas高级教程之:Dataframe的合并
目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...
随机推荐
- 异常检测-基于孤立森林算法Isolation-based Anomaly Detection-3-例子
参考:https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-e ...
- mac中matplotlib不支持中文的解决办法
参考:https://blog.csdn.net/kaizei_pao/article/details/80795377 首先查看matplotlib已加载的字体: import matplotlib ...
- Opencv加载网络图片
opencv加载网络图片 #include <iostream> #include <opencv2/opencv.hpp> using namespace std; usin ...
- 报错:ModuleNotFoundError: No module named '_ctypes'
报错背景: CentOS 7 Python3.7 安装 setuptools 插件的时候报错. 报错现象: [root@master setuptools-]# python3. setup.py b ...
- (二十三)IDEA 构建一个springboot工程,以及可能遇到的问题
一.下载安装intellij IEDA 需要破解 二.创建springboot工程 其他步骤省略,创建好的工程结构如下图: 三.配置springoboot工程 3.1 如上图src/main目录下只有 ...
- 04点睛Spring MVC 4.1-拦截器
转发地址:https://www.iteye.com/blog/wiselyman-2214292 4.1 拦截器 拦截器实现了对每一个请求处理之前和之后进行相关的处理,类似于Servlet的filt ...
- sonar:查询全部项目的bug和漏洞总数(只查询阻断/严重/主要级别)
1.统计所有项目主要以上的漏洞和bug -- 统计所有项目主要以上的漏洞和bug ,) AND severity IN('BLOCKER','CRITICAL','MAJOR') 2.统计所有某个项目 ...
- vue引入iconfont报错
参考链接:https://blog.csdn.net/weixin_37215881/article/details/89237213
- console.log()和alert()的区别
一直都是知道console.log()和alert()是有区别的,但是具体有什么区别就不清楚了,后来在权威指南里注意到了说alert()具有侵入性才来查一查两者的具体区别. 查询到的区别: alert ...
- DataGridView中的Combobox的应用
在WinForm中DataGridView可谓是应用比较多的数据显示控件了,DataGridView中可以应用各种控件,关于这样的文章网上 已有很多.都是实例化一个控件然后通过DataGridView ...