ACM-ICPC 2018 南京赛区网络预赛 K. The Great Nim Game(博弈)
题目链接:https://nanti.jisuanke.com/t/31000
题意:有N堆石子(N为大数),每堆的个数按一定方式生成,问先手取若干堆进行尼姆博弈,必胜的方式有多少种。
题解:因为 k < 4096,所以出现的数最多只有4096个,对每个数字只考虑出现奇/偶次进行dp,答案是所有不等于0的dp值的和。然后如果一个数字出现x次,它对自己出现奇数次的方案数和偶数次的方案数贡献都是乘上2 ^ (x - 1),每个数字的贡献都是2 ^ (x - 1) 总贡献就是2 ^ (N - ∑(vis[i]))。大数可以一边读入一边取模。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset((a),(b),sizeof(a))
#define mp(a,b) make_pair(a,b)
#define fi first
#define se second
#define pi acos(-1)
#define pii pair<int,int>
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const int MAXN = 1e7 + ;
const int MAXM = 2e6 + ;
const ll mod = 1e9 + ; bool vis[];
int dp[][];
vector<int>vec;
int f[]; ll pow_mod(ll a, ll n) {
ll ans = ;
while(n) {
if(n & ) ans = ans * a % mod;
a = a * a % mod;
n >>= ;
}
return ans;
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
ll ans = ;
char ch;
int len = ;
int n = 1e9;
while() {
scanf("%c", &ch);
if(ch == ' ') break;
ans = pow_mod(ans, );
if(len == ) ans = ;
ans = ans * (1ll << (ch - '')) % mod;
if(len <= ) {
if(len == )
n = ;
n = n * + ch - '';
len++;
}
}
int x;
scanf("%d", &x);
int temp = x;
int a, b, c, d, e, k;
scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &e, &k);
vec.push_back(x);
vis[x] = true;
for(int i = ; i <= ; i++) {
int x1 = 1ll * a * i * i % k * i * i % k;
int x2 = 1ll * b * i * i % k * i % k;
int x3 = 1ll * c * i * i % k;
int x4 = 1ll * d * i;
x = (x1 + x2 + x3 + x4 + e - ) % k + ;
f[i] = x;
}
int all = ;
while(all < n) {
all++;
int now = f[temp];
if(!vis[now]) {
vis[now] = true;
vec.push_back(now);
temp = now;
} else break;
}
int sz = vec.size();
dp[][] = ;
int pre = , now = ;
for(int i = ; i <= sz; i++) {
swap(pre, now);
int num = vec[i - ];
for(int j = ; j < ; j++) dp[now][j] = dp[pre][j];
for(int j = ; j < ; j++) {
dp[now][j ^ num] += dp[pre][j];
if(dp[now][j ^ num] >= mod) dp[now][j ^ num] -= mod;
}
}
ll sum = ;
for(int i = ; i < ; i++) {
sum += dp[now][i];
if(sum >= mod) sum -= mod;
}
ll inv = pow_mod(, sz);
inv = pow_mod(inv, mod - );
ans = ans * inv % mod;
ans = ans * sum % mod;
printf("%lld\n", ans);
return ;
}
ACM-ICPC 2018 南京赛区网络预赛 K. The Great Nim Game(博弈)的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛B
题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
- ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall
题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K Feeling hungry, a cute hamster decides to o ...
- ACM-ICPC 2018 南京赛区网络预赛
轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K Alice, a student of g ...
- ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze
262144K There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...
- ACM-ICPC 2018 南京赛区网络预赛(12/12)
ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛 E题
ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...
随机推荐
- IO-file-03 文件的长度
package com.bwie.io; import java.io.File; public class FileDemo4 { /**文件字节数 * length():字节数 文件夹 0 * * ...
- Flutter、Weex、RN,Native对比
- [转帖]密钥库文件格式(Keystore)和证书文件格式(Certificate)
密钥库文件格式[keystore]代码 https://blog.csdn.net/zzhongcy/article/details/22755317 格式 : JKS 扩展名 : .jks/.ks ...
- HTTP用户认证、追加协议以及相关技术简单学习
1. 用户身份认证 BASIC认证(基本认证): DIGEST(摘要认证): SSL客户端认证: FormBase认证(表单认证)常用: session和cookie 2. 基于HTTP的追加协议 A ...
- Netty的学习
看了几天高并发和NIO 今晚终于要开始学习Netty http://ifeve.com/netty5-user-guide/ Netty实现通信的步骤 1.创建两个NIO线程组,一个专门用于网络事件的 ...
- ubuntu 连接宽带
ubuntu 连接宽带 链接: https://blog.csdn.net/selous/article/details/55520765 主要命令 pppoeconf pon dsl-provide ...
- 19牛客暑期多校 round2 H 01矩阵内第二大矩形
题目传送门//res tp nowcoder 目的 给定n*m 01矩阵,求矩阵内第二大矩形 分析 O(nm)预处理01矩阵为n个直方图,问题转换为求n个直方图中的第二大矩形.单调栈计算,同时维护前二 ...
- Android Monkey压测命令
测试步骤:1.安装ADB2.连接被测手机和电脑3.打开CMD命令行4.输入monkey命令adb shell monkey -p your.package.name --pct-touch 30 -- ...
- Redis学习存档(2)——通过Java使用Redis:Jedis
一.创建项目,引入jedis jar包 可在百度搜索maven repository 进入后搜索jedis,复制依赖包到pom.xml文件中 <project xmlns="http: ...
- 第十三章 ZYNQ-MIZ701 TIMER定时器中断
上篇文章实现了了PS接受来自PL的中断,本片文章将在ZYNQ的纯PS里实现私有定时器中断.每隔一秒中断一次,在中断函数里计数加1,通过串口打印输出. 本文所使用的开发板是Miz701 PC 开发环 ...