ACM-ICPC 2018 南京赛区网络预赛 K. The Great Nim Game(博弈)
题目链接:https://nanti.jisuanke.com/t/31000
题意:有N堆石子(N为大数),每堆的个数按一定方式生成,问先手取若干堆进行尼姆博弈,必胜的方式有多少种。
题解:因为 k < 4096,所以出现的数最多只有4096个,对每个数字只考虑出现奇/偶次进行dp,答案是所有不等于0的dp值的和。然后如果一个数字出现x次,它对自己出现奇数次的方案数和偶数次的方案数贡献都是乘上2 ^ (x - 1),每个数字的贡献都是2 ^ (x - 1) 总贡献就是2 ^ (N - ∑(vis[i]))。大数可以一边读入一边取模。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset((a),(b),sizeof(a))
#define mp(a,b) make_pair(a,b)
#define fi first
#define se second
#define pi acos(-1)
#define pii pair<int,int>
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const int MAXN = 1e7 + ;
const int MAXM = 2e6 + ;
const ll mod = 1e9 + ; bool vis[];
int dp[][];
vector<int>vec;
int f[]; ll pow_mod(ll a, ll n) {
ll ans = ;
while(n) {
if(n & ) ans = ans * a % mod;
a = a * a % mod;
n >>= ;
}
return ans;
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
ll ans = ;
char ch;
int len = ;
int n = 1e9;
while() {
scanf("%c", &ch);
if(ch == ' ') break;
ans = pow_mod(ans, );
if(len == ) ans = ;
ans = ans * (1ll << (ch - '')) % mod;
if(len <= ) {
if(len == )
n = ;
n = n * + ch - '';
len++;
}
}
int x;
scanf("%d", &x);
int temp = x;
int a, b, c, d, e, k;
scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &e, &k);
vec.push_back(x);
vis[x] = true;
for(int i = ; i <= ; i++) {
int x1 = 1ll * a * i * i % k * i * i % k;
int x2 = 1ll * b * i * i % k * i % k;
int x3 = 1ll * c * i * i % k;
int x4 = 1ll * d * i;
x = (x1 + x2 + x3 + x4 + e - ) % k + ;
f[i] = x;
}
int all = ;
while(all < n) {
all++;
int now = f[temp];
if(!vis[now]) {
vis[now] = true;
vec.push_back(now);
temp = now;
} else break;
}
int sz = vec.size();
dp[][] = ;
int pre = , now = ;
for(int i = ; i <= sz; i++) {
swap(pre, now);
int num = vec[i - ];
for(int j = ; j < ; j++) dp[now][j] = dp[pre][j];
for(int j = ; j < ; j++) {
dp[now][j ^ num] += dp[pre][j];
if(dp[now][j ^ num] >= mod) dp[now][j ^ num] -= mod;
}
}
ll sum = ;
for(int i = ; i < ; i++) {
sum += dp[now][i];
if(sum >= mod) sum -= mod;
}
ll inv = pow_mod(, sz);
inv = pow_mod(inv, mod - );
ans = ans * inv % mod;
ans = ans * sum % mod;
printf("%lld\n", ans);
return ;
}
ACM-ICPC 2018 南京赛区网络预赛 K. The Great Nim Game(博弈)的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛B
题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
- ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall
题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K Feeling hungry, a cute hamster decides to o ...
- ACM-ICPC 2018 南京赛区网络预赛
轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K Alice, a student of g ...
- ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze
262144K There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...
- ACM-ICPC 2018 南京赛区网络预赛(12/12)
ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛 E题
ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...
随机推荐
- POJ2594 Treasure Exploration【DAG有向图可相交的最小路径覆盖】
题目链接:http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS Memory Limit: 65536K T ...
- NLP文本清理时常用的python小函数
# coding = utf-8 import re 1. 清理杂七杂八字符 ''' [a-zA-Z0-9] 字母数字 [\u4e00-\u9fa5] 汉字的utf-8 code范围 ''' # 保留 ...
- python 复制
1. list的复制 直接用赋值符号实现浅复制,两者用id()函数的返回值是相同的,也就是占用同一块内存空间. 导入 copy 库, 用 copy.deepcopy(list1) 再赋值实现深复制,两 ...
- 使用pycharm开发web——django2.1.5(三)创建models并进入交互界面shell做一些简单操作
这里model可以认为是数据对象本身 相当于在写java代码时候model目录下创建的实体类,models.py 中可以包含多个实体类,感觉这个操作挺骚的 下面是polls app里面的models, ...
- Oulipo POJ - 3461(kmp,求重叠匹配个数)
Problem Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, w ...
- Beautifulsoup模块基础用法详解
目录 Beautifulsoup模块 官方中文文档 介绍 基本使用 遍历文档树 搜索文档树 五种过滤器 **find_all( name , attrs , recursive , text , ** ...
- LeetCode 答案(python)1-17
1.给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], targe ...
- linux下shell 脚本 中windows换行符换成linux换行符
sed -i 's/\r//' filename window下默认是 \r\n linux下是\n unix下是\r
- 【第一季】CH08_FPGA_Button 按钮去抖动实验
[第一季]CH08_FPGA_Button 按钮去抖动实验 按键的消抖,是指按键在闭合或松开的瞬间伴随着一连串的抖动,这样的抖动将直接影响设计系统的稳定性,降低响应灵敏度.因此,必须对抖动进行处理,即 ...
- TCP协议探究(四):定时器
1 概述 重传定时器:使用于当希望收到另一端的确认. 坚持(persist)定时器:使窗口大小信息保持不断流动,即使另一端关闭了其接收窗口 保活(keepalive)定时器:用于检测一个空闲连接的另一 ...