题目链接:https://nanti.jisuanke.com/t/31000

题意:有N堆石子(N为大数),每堆的个数按一定方式生成,问先手取若干堆进行尼姆博弈,必胜的方式有多少种。

题解:因为 k < 4096,所以出现的数最多只有4096个,对每个数字只考虑出现奇/偶次进行dp,答案是所有不等于0的dp值的和。然后如果一个数字出现x次,它对自己出现奇数次的方案数和偶数次的方案数贡献都是乘上2 ^ (x - 1),每个数字的贡献都是2 ^ (x - 1) 总贡献就是2 ^ (N - ∑(vis[i]))。大数可以一边读入一边取模。

 #include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset((a),(b),sizeof(a))
#define mp(a,b) make_pair(a,b)
#define fi first
#define se second
#define pi acos(-1)
#define pii pair<int,int>
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const int MAXN = 1e7 + ;
const int MAXM = 2e6 + ;
const ll mod = 1e9 + ; bool vis[];
int dp[][];
vector<int>vec;
int f[]; ll pow_mod(ll a, ll n) {
ll ans = ;
while(n) {
if(n & ) ans = ans * a % mod;
a = a * a % mod;
n >>= ;
}
return ans;
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
ll ans = ;
char ch;
int len = ;
int n = 1e9;
while() {
scanf("%c", &ch);
if(ch == ' ') break;
ans = pow_mod(ans, );
if(len == ) ans = ;
ans = ans * (1ll << (ch - '')) % mod;
if(len <= ) {
if(len == )
n = ;
n = n * + ch - '';
len++;
}
}
int x;
scanf("%d", &x);
int temp = x;
int a, b, c, d, e, k;
scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &e, &k);
vec.push_back(x);
vis[x] = true;
for(int i = ; i <= ; i++) {
int x1 = 1ll * a * i * i % k * i * i % k;
int x2 = 1ll * b * i * i % k * i % k;
int x3 = 1ll * c * i * i % k;
int x4 = 1ll * d * i;
x = (x1 + x2 + x3 + x4 + e - ) % k + ;
f[i] = x;
}
int all = ;
while(all < n) {
all++;
int now = f[temp];
if(!vis[now]) {
vis[now] = true;
vec.push_back(now);
temp = now;
} else break;
}
int sz = vec.size();
dp[][] = ;
int pre = , now = ;
for(int i = ; i <= sz; i++) {
swap(pre, now);
int num = vec[i - ];
for(int j = ; j < ; j++) dp[now][j] = dp[pre][j];
for(int j = ; j < ; j++) {
dp[now][j ^ num] += dp[pre][j];
if(dp[now][j ^ num] >= mod) dp[now][j ^ num] -= mod;
}
}
ll sum = ;
for(int i = ; i < ; i++) {
sum += dp[now][i];
if(sum >= mod) sum -= mod;
}
ll inv = pow_mod(, sz);
inv = pow_mod(inv, mod - );
ans = ans * inv % mod;
ans = ans * sum % mod;
printf("%lld\n", ans);
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 K. The Great Nim Game(博弈)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  2. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  3. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  4. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

  5. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

  6. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze

    262144K   There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...

  7. ACM-ICPC 2018 南京赛区网络预赛(12/12)

    ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...

  8. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  9. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

随机推荐

  1. eXosip的register注册

    转载于:http://blog.sina.com.cn/s/blog_4868f98601018ioh.html 这个测试程序是从eXosip原有的测试程序改造的.原程序是tools 目录下的 sip ...

  2. java中package包

    一个.java文件内部有一个.而且只能有一个public类,类名必须与文件名完全一致. 在一个.java文件的开头使用package关键字,作用是指出这个编译单元属于该package的一个库的一部分. ...

  3. oracle-function-into时为null报错

    oracle-function-into时为null报错 create or replace function P_ADD_CUSTOMER_FOR_CSS_heyt_test(i_cust_name ...

  4. 如何使用RedisTemplate访问Redis数据结构之字符串操作

    Redis 数据结构简介 Redis 可以存储键与5种不同数据结构类型之间的映射,这5种数据结构类型分别为String(字符串).List(列表).Set(集合).Hash(散列)和 Zset(有序集 ...

  5. Kubernetes---Pod phase

    ⒈Pod phase Pod的status字段是一个PodStatus对象,PodStatus中有一个 phase字段. Pod的相位(phase)是Pod 在其生命周期中的简单宏观概述.该阶段并不是 ...

  6. GCD欧几里得的拓展算法

    欧几里得算法的拓展主要是用于求解   : 已知整数 a, b,然后我们进行  ax + by == gcd(a , b) 的问题求解 那么如何进行求解呢?和欧几里得算法一样, 我们需要进行递归的方式进 ...

  7. PHP后台开发小经验

    js页面传参数 js的参数传输是关键,尤其是当一个页面的数据需要分步骤上传时. 同样的删除功能,不会操作批量删除时可以尝试单个删除,功能差不多,实现功能的方法也千千万,先做成它是第一位. 主页面很多条 ...

  8. Go-环境搭建-hello world-变量常量定义-函数使用基础

    目录 编程语言科普 常见语言的背景 go 为什么这么火? 环境搭建(很重要) ide 编辑器 注释 第一个程序 Hello world! 编译与执行 变量类型 数字类型 字符串类型 布尔类型 常量 函 ...

  9. 7.Linux查找目录下的所有文件中是否含有某个字符串

    grep -rn "map" * 说明:-r 是递归查找-n 是显示行号* : 表示当前目录所有文件,也可以是某个文件名

  10. kubernetes kubeadm安装v1.14

    1.我们这里准备两台Centos7的主机用于安装,后续节点可以根究需要添加即可:master node01两台都得改:cat /etc/hosts192.168.71.134 master192.16 ...