给定 $n$ 个两两不同的正整数 $a_1, a_2, \dots, a_n$,$a_i < 2^k$ 。

Problem 1(经典问题)

求 $a_i \xor a_j$ 的最大值,$ 1\le i, j \le n $ 。

解法

字典树

Problem 2

从 $n$ 个数中任选出一些数,求异或和的最大值。

Let the length of a number be the number of digits needed to write it out in binary, excluding any leading zeros.

Clearly, if all the input numbers had a different length, the problem would have a trivial solution: just iterate over the input numbers in decreasing order by length, choosing each number if and only if XORing it with the maximum so far increases the maximum, i.e., if and only if its leading bit is not set in the current maximum.

The tricky part is when the input may contain multiple numbers with the same length, since then it's not obvious which of them we should choose to include in the XOR. What we'd like to do is reduce the input list into an equivalent form that doesn't contain more than one number of the same length.

Conveniently, this is exactly what Gaussian elimination does: it transforms a list of vectors into another list of vectors which have strictly decreasing length, as defined above (that is, into a list which is in echelon form), but which spans the same linear subspace.

The reason this linear algebra algorithm is relevant here is that binary numbers satisfy the axioms of a vector space over the finite field of two elements, a.k.a. GF(2), with the number viewed as vectors of bits, and with XOR as the vector addition operation. (We also need a scalar multiplication operation to satisfy the axioms, but that's trivial, since the only scalars in GF(2) are $1$ and $0$.)

The linear subspace spanned by a set of bit vectors (i.e. binary numbers) over GF(2) is then simply the set of vectors obtainable by XORing a subset of them. Thus, if we can use Gaussian elimination to convert our input list into another one, which spans the same subspace, we can solve the problem using this other list and know that it gives the same solution as for the original problem.

Thus, we need to implement Gaussian elimination over GF(2).

// a[i] < (1LL << 60)
long long max_xor_sum(vector<long long> a, int n) {
long long res = 0;
int index = 0;
for (int column = 59; column >= 0; --column) {
long long mask = 1LL << column;
for (int row = index; row < n; ++row) {
if (a[row] & mask) {
swap(a[row], a[index]);
for (int row_ = row + 1; row_ < n; ++row_) {
if (a[row_] & mask) {
a[row_] ^= a[index];
}
}
if ((res & mask) == 0) {
res ^= a[index];
}
++index;
break;
}
}
}
return res;
}

References

https://math.stackexchange.com/a/1054206/538611

Problem 3

AtCoder Beginner Contest 141 Task F Xor Sum 3

Problem Statment

We have $N$ non-negative integers: $A_1, A_2, \dots, A_n$.

Consider painting at least one and at most $N − 1$ integers among them in red, and painting the rest in blue.

Let the beauty of the painting be the XOR of the integers painted in red, plus the XOR of the integers painted in blue.

Find the maximum possible beauty of the painting.

Constraints

  • All values in input are integers.
  • $2 \le N \le 10^5$
  • $0 \le A_i < 2^{60} \ (1 \leq i \leq N)$

解法

此问题可转化为 Problem 2。

若第 $i$ 个二进制位为 1 的数共有奇数个,则不论如何划分,两部分的异或和在第 $i$ 位上必然一个是 1,一个是 0。

我们只需要考虑共有偶数个 1 的那些二进制位,在这些位上,不论如何划分,两部分的异或和一定是相等的,因此我们的目标是使这些位上的异或和最大,于是问题转化为 Problem 2。

代码 https://atcoder.jp/contests/abc141/submissions/7551333

Maximum XOR Sum 系列问题的更多相关文章

  1. 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum

    题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...

  2. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

  3. [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  4. [leetcode]Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

  5. LeetCode(124) Binary Tree Maximum Path Sum

    题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...

  6. LeetCode124:Binary Tree Maximum Path Sum

    题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...

  7. leetcode 124. Binary Tree Maximum Path Sum

    Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...

  8. [lintcode] Binary Tree Maximum Path Sum II

    Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...

  9. 【leetcode】Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

随机推荐

  1. codevs 3022 西天收费站 x

                         题目描述 Description 唐僧师徒四人终于发现西天就在眼前,但猴子突然发现前面有n个收费站(如来佛太可恶),在每个收费站用不同的方式要交的钱不同,输入 ...

  2. jeecg中dictSelect取值方式

    jeecg中的dictSelect本质是生成了很多input标签和div标签组成的,input存储的对应的就是字典中的code,div存储的就是字典中的name, 下面是取出code和那么的实例: 例 ...

  3. codeforces271D

    Good Substrings CodeForces - 271D 给你一个只包含小写字母的字符串s.问你在这个字符串中有多少个不同的子串.且要求这些子串中不得出现超过k个的特殊字母.*子串s1和子串 ...

  4. Latex里面的\newtheorem*{xx}{yy}后面的*是干什么的?

    答案: 加了*表示不标号.例如: 同样使用命令: \begin{prb} xx\end{prb} 1. \newtheorem{prb}{Problem Formulation} → Problem ...

  5. linux线程池thrmgr源码解析

    linux线程池thrmgr源码解析 1         thrmgr线程池的作用 thrmgr线程池的作用是提高程序的并发处理能力,在多CPU的服务器上运行程序,可以并发执行多个任务. 2      ...

  6. cocos2dx热更新之后,闪退问题记录。

    如果使用cocos2dx的3.17.2版本的官方热更新. 然后有玩家反馈说热更新之后游戏闪退,游戏内有部分资源没更到. 考虑如下几个方面调整. 1,在文件下载失败的时候,直接调用重新下载. 2,把下载 ...

  7. (一)C语言的四大数据类型

  8. 2018-2019-2 网络对抗技术 20165205 Exp8 Web基础

    2018-2019-2 网络对抗技术 20165205 Exp8 Web基础 1.原理与实践说明 1.1实践内容 Web前段HTML:能正常安装.启停Apache.理解HTML,理解表单,理解GET与 ...

  9. websphere启动报:Could not resolve placeholder 'hibernate.hbm2ddl.auto' in string value "${hibernate.hbm2ddl.auto}"

    websphere启动报/WEB-INF/applicationContext-orm- hibernate.xml]: Could not resolve placeholder 'hibernat ...

  10. 解决FTP服务器上中文名文件下载后为空的问题

    转: 解决FTP服务器上中文名文件下载后为空的问题 2017年07月20日 15:19:21 代码的寂寞 阅读数 2428  版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...