Maximum XOR Sum 系列问题
给定 $n$ 个两两不同的正整数 $a_1, a_2, \dots, a_n$,$a_i < 2^k$ 。
Problem 1(经典问题)
求 $a_i \xor a_j$ 的最大值,$ 1\le i, j \le n $ 。
解法
字典树
Problem 2
从 $n$ 个数中任选出一些数,求异或和的最大值。
Let the length of a number be the number of digits needed to write it out in binary, excluding any leading zeros.
Clearly, if all the input numbers had a different length, the problem would have a trivial solution: just iterate over the input numbers in decreasing order by length, choosing each number if and only if XORing it with the maximum so far increases the maximum, i.e., if and only if its leading bit is not set in the current maximum.
The tricky part is when the input may contain multiple numbers with the same length, since then it's not obvious which of them we should choose to include in the XOR. What we'd like to do is reduce the input list into an equivalent form that doesn't contain more than one number of the same length.
Conveniently, this is exactly what Gaussian elimination does: it transforms a list of vectors into another list of vectors which have strictly decreasing length, as defined above (that is, into a list which is in echelon form), but which spans the same linear subspace.
The reason this linear algebra algorithm is relevant here is that binary numbers satisfy the axioms of a vector space over the finite field of two elements, a.k.a. GF(2), with the number viewed as vectors of bits, and with XOR as the vector addition operation. (We also need a scalar multiplication operation to satisfy the axioms, but that's trivial, since the only scalars in GF(2) are $1$ and $0$.)
The linear subspace spanned by a set of bit vectors (i.e. binary numbers) over GF(2) is then simply the set of vectors obtainable by XORing a subset of them. Thus, if we can use Gaussian elimination to convert our input list into another one, which spans the same subspace, we can solve the problem using this other list and know that it gives the same solution as for the original problem.
Thus, we need to implement Gaussian elimination over GF(2).
// a[i] < (1LL << 60)
long long max_xor_sum(vector<long long> a, int n) {
long long res = 0;
int index = 0;
for (int column = 59; column >= 0; --column) {
long long mask = 1LL << column;
for (int row = index; row < n; ++row) {
if (a[row] & mask) {
swap(a[row], a[index]);
for (int row_ = row + 1; row_ < n; ++row_) {
if (a[row_] & mask) {
a[row_] ^= a[index];
}
}
if ((res & mask) == 0) {
res ^= a[index];
}
++index;
break;
}
}
}
return res;
}
References
https://math.stackexchange.com/a/1054206/538611
Problem 3
AtCoder Beginner Contest 141 Task F Xor Sum 3
Problem Statment
We have $N$ non-negative integers: $A_1, A_2, \dots, A_n$.
Consider painting at least one and at most $N − 1$ integers among them in red, and painting the rest in blue.
Let the beauty of the painting be the XOR of the integers painted in red, plus the XOR of the integers painted in blue.
Find the maximum possible beauty of the painting.
Constraints
- All values in input are integers.
- $2 \le N \le 10^5$
- $0 \le A_i < 2^{60} \ (1 \leq i \leq N)$
解法
此问题可转化为 Problem 2。
若第 $i$ 个二进制位为 1 的数共有奇数个,则不论如何划分,两部分的异或和在第 $i$ 位上必然一个是 1,一个是 0。
我们只需要考虑共有偶数个 1 的那些二进制位,在这些位上,不论如何划分,两部分的异或和一定是相等的,因此我们的目标是使这些位上的异或和最大,于是问题转化为 Problem 2。
代码 https://atcoder.jp/contests/abc141/submissions/7551333
Maximum XOR Sum 系列问题的更多相关文章
- 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum
题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...
- Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...
- [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [leetcode]Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- LeetCode(124) Binary Tree Maximum Path Sum
题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...
- LeetCode124:Binary Tree Maximum Path Sum
题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...
- leetcode 124. Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
- [lintcode] Binary Tree Maximum Path Sum II
Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...
- 【leetcode】Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
随机推荐
- Python 简易Cmd控制
Cmd控制 昨天看到了别的组的部署方案,使用python来控制的,我们是用shell 今天尝试了一下 code import os import sys from cmd import Cmd cla ...
- 【CUDA 基础】3.6 动态并行
title: [CUDA 基础]3.6 动态并行 categories: - CUDA - Freshman tags: - 动态并行 - 嵌套执行 - 隐式同步 toc: true date: 20 ...
- html基础(img、a、列表 )
图片标签(img) <img src="图片路径" alt="图片描述 图片无法正常显示出现文字" title="爱你"/> i ...
- docker启动、关闭、重启命令
docker启动命令,docker重启命令,docker关闭命令 启动 systemctl start docker守护进程重启 sudo systemctl daemon-relo ...
- Excel表格写入操作函数 C++
#pragma once #include <stdio.h> #include <string.h> typedef unsigned short ushort; class ...
- Nginx开启访问日志记录
1. vi /etc/nginx/nginx.conf 2.打开 log_format 前的注释 3.Server节点中加入 access_log logs/www_access.log main; ...
- Vue avoid mutating a prop directly since the value will be overwritten
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Deep Visualization:可视化并理解CNN
原文地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没 ...
- RGB颜色透明度转换
100% — FF95% — F290% — E685% — D980% — CC75% — BF70% — B365% — A660% — 9955% — 8C50% — 8045% — 7340% ...
- Django之缓存配置
01-什么是缓存 缓存(cache),其作用是缓和较慢存储的高频次请求,简单来说,就是加速满存储的访问效率. 02-几种缓存配置 # 内存缓存:local-memory caching CACHES ...