给定 $n$ 个两两不同的正整数 $a_1, a_2, \dots, a_n$,$a_i < 2^k$ 。

Problem 1(经典问题)

求 $a_i \xor a_j$ 的最大值,$ 1\le i, j \le n $ 。

解法

字典树

Problem 2

从 $n$ 个数中任选出一些数,求异或和的最大值。

Let the length of a number be the number of digits needed to write it out in binary, excluding any leading zeros.

Clearly, if all the input numbers had a different length, the problem would have a trivial solution: just iterate over the input numbers in decreasing order by length, choosing each number if and only if XORing it with the maximum so far increases the maximum, i.e., if and only if its leading bit is not set in the current maximum.

The tricky part is when the input may contain multiple numbers with the same length, since then it's not obvious which of them we should choose to include in the XOR. What we'd like to do is reduce the input list into an equivalent form that doesn't contain more than one number of the same length.

Conveniently, this is exactly what Gaussian elimination does: it transforms a list of vectors into another list of vectors which have strictly decreasing length, as defined above (that is, into a list which is in echelon form), but which spans the same linear subspace.

The reason this linear algebra algorithm is relevant here is that binary numbers satisfy the axioms of a vector space over the finite field of two elements, a.k.a. GF(2), with the number viewed as vectors of bits, and with XOR as the vector addition operation. (We also need a scalar multiplication operation to satisfy the axioms, but that's trivial, since the only scalars in GF(2) are $1$ and $0$.)

The linear subspace spanned by a set of bit vectors (i.e. binary numbers) over GF(2) is then simply the set of vectors obtainable by XORing a subset of them. Thus, if we can use Gaussian elimination to convert our input list into another one, which spans the same subspace, we can solve the problem using this other list and know that it gives the same solution as for the original problem.

Thus, we need to implement Gaussian elimination over GF(2).

// a[i] < (1LL << 60)
long long max_xor_sum(vector<long long> a, int n) {
long long res = 0;
int index = 0;
for (int column = 59; column >= 0; --column) {
long long mask = 1LL << column;
for (int row = index; row < n; ++row) {
if (a[row] & mask) {
swap(a[row], a[index]);
for (int row_ = row + 1; row_ < n; ++row_) {
if (a[row_] & mask) {
a[row_] ^= a[index];
}
}
if ((res & mask) == 0) {
res ^= a[index];
}
++index;
break;
}
}
}
return res;
}

References

https://math.stackexchange.com/a/1054206/538611

Problem 3

AtCoder Beginner Contest 141 Task F Xor Sum 3

Problem Statment

We have $N$ non-negative integers: $A_1, A_2, \dots, A_n$.

Consider painting at least one and at most $N − 1$ integers among them in red, and painting the rest in blue.

Let the beauty of the painting be the XOR of the integers painted in red, plus the XOR of the integers painted in blue.

Find the maximum possible beauty of the painting.

Constraints

  • All values in input are integers.
  • $2 \le N \le 10^5$
  • $0 \le A_i < 2^{60} \ (1 \leq i \leq N)$

解法

此问题可转化为 Problem 2。

若第 $i$ 个二进制位为 1 的数共有奇数个,则不论如何划分,两部分的异或和在第 $i$ 位上必然一个是 1,一个是 0。

我们只需要考虑共有偶数个 1 的那些二进制位,在这些位上,不论如何划分,两部分的异或和一定是相等的,因此我们的目标是使这些位上的异或和最大,于是问题转化为 Problem 2。

代码 https://atcoder.jp/contests/abc141/submissions/7551333

Maximum XOR Sum 系列问题的更多相关文章

  1. 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum

    题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...

  2. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

  3. [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  4. [leetcode]Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

  5. LeetCode(124) Binary Tree Maximum Path Sum

    题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...

  6. LeetCode124:Binary Tree Maximum Path Sum

    题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...

  7. leetcode 124. Binary Tree Maximum Path Sum

    Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...

  8. [lintcode] Binary Tree Maximum Path Sum II

    Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...

  9. 【leetcode】Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

随机推荐

  1. zabbix企业微信告警配置教程

    前言: zabbix企业微信告警只需要配置一次就可以使用很久了,但是发现再次配置时,总会有遗忘,很麻烦又要去重新熟悉,所以,现在记录一份详细的配置过程,方便日后再次配置. 1.zabbix_serve ...

  2. Centos7 内核升级及删除无用内核

    导入key rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org 安装elrepo的yum源 rpm -Uvh http://www.e ...

  3. oracle 中怎样实现分页和去处重复

    oracle 中用关键字 rownum 来进行分页 rownum  不能使用大于号,只能是使用小于号,可以使用子查询和rownum一起使用来创建分页 SELECT * FROM ( SELECT e. ...

  4. Linux 如何查看端口与进程占用情况

    1 lsof -i:port  查看端口使用情况 lsof -i 如果出现 command not found,直接yum install lsof即可. (1) lsof -i lsof -i 用以 ...

  5. 纹身女孩 Tattooed girl 可爱动人 出水芙蓉 窈窕多姿

    目录 开宗明义

  6. nginx中location匹配规则介绍

    一,匹配规则 1,= 表示精确匹配 例子:http://localhost/  将匹配到 location = / {...} http://localhost/aaa  可以匹配到 location ...

  7. 九、封装登录POST请求、登录后POST请求以及GET请求

    一.封装登录后POST请求以及GET请求 /** * 全局运行时环境参数管理器 */ public static Map<String, String> BASE_GLOBAL_MAP; ...

  8. js获取当前日期并格式yyy-MM-dd

    //格式化日期:yyyy-MM-dd function formatDate(date) { var myyear = date.getFullYear(); var mymonth = date.g ...

  9. JNI知识扩展

    JNI(Java Native Interface,JAVA原生接口) 使用JNI可以使Java代码和其他语言写的代码(如C/C++代码)进行交互. 问:为什么要进行交互? |- 首先,Java语言提 ...

  10. BFC是什么?有什么作用?

    BFC(Block Formatting Context)直译为“块级格式化范围”. 一.常见定位方案 在讲 BFC 之前,我们先来了解一下常见的定位方案,定位方案是控制元素的布局,有三种常见方案: ...