Maximum XOR Sum 系列问题
给定 $n$ 个两两不同的正整数 $a_1, a_2, \dots, a_n$,$a_i < 2^k$ 。
Problem 1(经典问题)
求 $a_i \xor a_j$ 的最大值,$ 1\le i, j \le n $ 。
解法
字典树
Problem 2
从 $n$ 个数中任选出一些数,求异或和的最大值。
Let the length of a number be the number of digits needed to write it out in binary, excluding any leading zeros.
Clearly, if all the input numbers had a different length, the problem would have a trivial solution: just iterate over the input numbers in decreasing order by length, choosing each number if and only if XORing it with the maximum so far increases the maximum, i.e., if and only if its leading bit is not set in the current maximum.
The tricky part is when the input may contain multiple numbers with the same length, since then it's not obvious which of them we should choose to include in the XOR. What we'd like to do is reduce the input list into an equivalent form that doesn't contain more than one number of the same length.
Conveniently, this is exactly what Gaussian elimination does: it transforms a list of vectors into another list of vectors which have strictly decreasing length, as defined above (that is, into a list which is in echelon form), but which spans the same linear subspace.
The reason this linear algebra algorithm is relevant here is that binary numbers satisfy the axioms of a vector space over the finite field of two elements, a.k.a. GF(2), with the number viewed as vectors of bits, and with XOR as the vector addition operation. (We also need a scalar multiplication operation to satisfy the axioms, but that's trivial, since the only scalars in GF(2) are $1$ and $0$.)
The linear subspace spanned by a set of bit vectors (i.e. binary numbers) over GF(2) is then simply the set of vectors obtainable by XORing a subset of them. Thus, if we can use Gaussian elimination to convert our input list into another one, which spans the same subspace, we can solve the problem using this other list and know that it gives the same solution as for the original problem.
Thus, we need to implement Gaussian elimination over GF(2).
// a[i] < (1LL << 60)
long long max_xor_sum(vector<long long> a, int n) {
long long res = 0;
int index = 0;
for (int column = 59; column >= 0; --column) {
long long mask = 1LL << column;
for (int row = index; row < n; ++row) {
if (a[row] & mask) {
swap(a[row], a[index]);
for (int row_ = row + 1; row_ < n; ++row_) {
if (a[row_] & mask) {
a[row_] ^= a[index];
}
}
if ((res & mask) == 0) {
res ^= a[index];
}
++index;
break;
}
}
}
return res;
}
References
https://math.stackexchange.com/a/1054206/538611
Problem 3
AtCoder Beginner Contest 141 Task F Xor Sum 3
Problem Statment
We have $N$ non-negative integers: $A_1, A_2, \dots, A_n$.
Consider painting at least one and at most $N − 1$ integers among them in red, and painting the rest in blue.
Let the beauty of the painting be the XOR of the integers painted in red, plus the XOR of the integers painted in blue.
Find the maximum possible beauty of the painting.
Constraints
- All values in input are integers.
- $2 \le N \le 10^5$
- $0 \le A_i < 2^{60} \ (1 \leq i \leq N)$
解法
此问题可转化为 Problem 2。
若第 $i$ 个二进制位为 1 的数共有奇数个,则不论如何划分,两部分的异或和在第 $i$ 位上必然一个是 1,一个是 0。
我们只需要考虑共有偶数个 1 的那些二进制位,在这些位上,不论如何划分,两部分的异或和一定是相等的,因此我们的目标是使这些位上的异或和最大,于是问题转化为 Problem 2。
代码 https://atcoder.jp/contests/abc141/submissions/7551333
Maximum XOR Sum 系列问题的更多相关文章
- 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum
题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...
- Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...
- [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [leetcode]Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- LeetCode(124) Binary Tree Maximum Path Sum
题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...
- LeetCode124:Binary Tree Maximum Path Sum
题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...
- leetcode 124. Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
- [lintcode] Binary Tree Maximum Path Sum II
Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...
- 【leetcode】Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
随机推荐
- cx_freeze multiprocessing 打包后反复重启
写了给flask程序,此外还需要用multiprocessing 启动一个守护进程. 不打包一切正常,用cx_freeze打包后,发现flask反复重启.任务管理器里这个GUI窗口的进程数不断增加. ...
- TTTTTTTTTTTTTT hdu 5763 Another Meaning 哈希+dp
Another Meaning Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- ZOJ - 3591 NIM
ZOJ - 3591NIM 题目大意:给你n,s,w和代码,能生成长度为n的序列,问异或和不为0的子序列有多少个? 这是个挂羊头卖狗肉的题,和NIM博弈的关系就是要异或和不为0,一开始以博弈甚至循环节 ...
- linux 上修改了nginx.conf 怎么重新加载配置文件生效
步骤如下先利用/usr/local/nginx/sbin/nginx -t测试配置文件修改是否正常/usr/local/nginx/sbin/nginx -s reload重新加载 nginx 更改配 ...
- 解决Vue刷新一瞬间出现样式未加载完或者出现Vue代码问题
解决Vue刷新一瞬间出现样式未加载完或者出现Vue代码问题: <style> [v-cloak]{ display: none; } </style> <div id=& ...
- C++入门经典-例6.22-字符串与数组,string类型的数组
1:数组中存储的数据也可以是string类型的.代码如下: // 6.22.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include ...
- HearthBuddy卡组
偶数萨 手打两天已上传说,各位加油 欧洲牧羊人 ### 火元素换艾雅# 职业:萨满祭司# 模式:狂野模式## 2x (2) 图腾魔像 # 2x (2) 大漩涡传送门 # 2x (2 ...
- pandas之to_datetime时区转换
from datetime import date, datetime, timedelta import time import pandas as pd from pand ...
- jxbrowser 实现自定义右键菜单
https://blog.csdn.net/shuaizai88/article/details/73743691 public static void main(String[] args) { J ...
- SQL编写自定义函数
-- 通过一个子级ID 返回一级分类名称alter function calcclass(@dclassid as int)returns varchar(50)asbegin-- 通过一个子级ID ...