CF1151F Sonya and Informatics
我们最终要的序列一定是前面全是0,后面全是1,假设总共\(m\)个0,那么这等价于前\(m\)位0的个数为\(m\).当然一开始可能数量没有\(m\)
那就把前\(m\)位0的数量作为状态,记\(f_{i,j}\)表示前\(i\)次操作,前\(m\)位有\(j\)个0的概率.转移的话只有两种情况会改变状态下表,第一种是前面的0和后面的1交换,这会导致\(j-1\),第二种是前面的1和后面的0交换,这会导致\(j+1\),剩下的情况都不会改变\(j\).所以就可以做到\(O(nk)\)转移,至于前面1数量,以及后面0/1数量都可以通过\(j\)推出来
状态和转移是个矩阵的形式,矩乘优化即可
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=100+10,mod=1e9+7;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int ginv(int a){return fpow(a,mod-2);}
int n,m,kk,a[N];
struct matrix
{
int a[N][N];
matrix(){memset(a,0,sizeof(a));}
matrix operator * (const matrix &bb) const
{
matrix an;
for(int i=0;i<=m;++i)
for(int j=0;j<=m;++j)
{
LL nw=0;
for(int k=0;k<=m;++k) nw+=1ll*a[i][k]*bb.a[k][j]%mod;
an.a[i][j]=nw%mod;
}
return an;
}
matrix operator ^ (const LL &bb) const
{
matrix an,a=*this;
for(int i=0;i<=m;++i) an.a[i][i]=1;
LL b=bb;
while(b)
{
if(b&1) an=an*a;
a=a*a,b>>=1;
}
return an;
}
}aa,bb;
int main()
{
////////////////////
n=rd(),kk=rd();
for(int i=1;i<=n;++i)
a[i]=rd(),m+=!a[i];
int nn=n*(n-1)/2,p=ginv(nn);
for(int i=max(m+m-n,0);i<=m;++i)
{
if(i>0) bb.a[i][i-1]=(bb.a[i][i-1]+1ll*i*(n-m-m+i)%mod*p%mod)%mod;
if(i<m) bb.a[i][i+1]=(bb.a[i][i+1]+1ll*(m-i)*(m-i)%mod*p%mod)%mod;
bb.a[i][i]=(bb.a[i][i]+1ll*(nn-i*(n-m-m+i)%mod-(m-i)*(m-i)%mod)*p%mod)%mod;
}
int mm=0;
for(int i=1;i<=m;++i) mm+=!a[i];
aa.a[0][mm]=1;
printf("%d\n",(aa*(bb^kk)).a[0][m]);
return 0;
}
CF1151F Sonya and Informatics的更多相关文章
- CF1151F Sonya and Informatics(概率期望,DP,矩阵快速幂)
明明是水题结果没切掉……降智了…… 首先令 $c$ 为序列中 $0$ 的个数,那么排序后序列肯定是前面 $c$ 个 $0$,后面 $n-c$ 个 $1$. 那么就能上 DP 了.(居然卡在这里……) ...
- CF1151F Sonya and Informatics (计数dp+矩阵优化)
题目地址 Solution (duyi是我们的红太阳) (这里说一句:这题看上去是一个概率dp,鉴于这题的概率dp写法看上去不好写,我们其实可以写一个计数dp) 首先拿到这个题目我们要能设出一个普通d ...
- 【CF1151F】Sonya and Informatics(动态规划,矩阵快速幂)
[CF1151F]Sonya and Informatics(动态规划,矩阵快速幂) 题面 CF 题解 考虑一个暴力\(dp\).假设有\(m\)个\(0\),\(n-m\)个\(1\).设\(f[i ...
- CodeForces 1151F Sonya and Informatics
题目链接:http://codeforces.com/problemset/problem/1151/F 题目大意: 给定长度为 n 的 01 序列,可以对该序列操作 k 次,每次操作可以交换序列中任 ...
- Codeforces 1151F Sonya and Informatics (概率dp)
大意: 给定01序列, 求随机交换k次后, 序列升序的概率. 假设一共$tot$个$0$, 设交换$i$次后前$tot$个数中有$j$个$0$的方案数为$dp[i][j]$, 答案即为$\frac{d ...
- Codeforces Round #553 F Sonya and Informatics
题目 题目大意 给定一个长为 $n$($2 \le n \le 100$)的01串 $S$ .对 $S$ 进行 $k$($1 \le k \le 10^9$)次操作:等概率地选取两个下标 $i, j$ ...
- codeforces选做
收录了最近本人完成的一部分codeforces习题,不定期更新 codeforces 1132E Knapsack 注意到如果只使用某一种物品,那么这八种物品可以达到的最小相同重量为\(840\) 故 ...
- Codeforces1151E,F | 553Div2 | 瞎讲报告
传送链接 E. Number of Components 当时思博了..一直在想对于\([1,r]\)的联通块和\([1,l-1]\)的联通块推到\([l,r]\)的联通块...我真的是傻了..这题明 ...
- Codeforces Round #553 (Div. 2) 题解
昨晚深夜修仙上紫记,虽然不错还是很有遗憾的. A. Maxim and Biology 看完就会做的题,然而手速跟不上 #include<cstdio> #include<iostr ...
随机推荐
- Nginx-rtmp之 AMF0 的处理
1. 综述 当检测到接收到的 RTMP 消息中 Message Header 中 message type id 为 20 时,表示,接收到的是 AMF 类型的数据, 因此需要对接收的数据进行 AMF ...
- Python 图形界面元素
from tkinter import * import os def button_click1(): try: filePath = r'D:\CloudMusic' os.system(&quo ...
- fastadmin后台视频文件上传,受限制,修改php.ini配置即可
post_max_size = 50M(根据情况)upload_max_filesize = 50M(根据情况)
- js向input的value赋值
js与jquery:在我印象里面都是一样的,今天利用空闲的时间来总结一下,js与jquery究竟有什么区别? js : 是一门网页的脚本语言 jquery :jquery是基于js的一种框架,也就是说 ...
- Java-数据类型与编码(ASCII、Unicode 和 UTF-8)
机械硬盘硬件结构(了解)https://diy.pconline.com.cn/cpu/study_cpu/1009/2215404_all.html 一.数据储存单位 1.bit(位) https: ...
- PHP 封装POD 类
使用POD的过程 //1.造DSN:驱动名:dbname=数据库名;host=服务器地址 $dsn = "mysql:dbname=mydb;host=localhost"; // ...
- OGG 从Oracle备库同步数据至kafka
OGG 从Oracle备库同步数据至kafka Table of Contents 1. 目的 2. 环境及规划 3. 安装配置JDK 3.1. 安装jdk 3.2. 配置环境变量 4. 安装Data ...
- spring 过滤器- 过滤登陆请求路径(过滤静态资源跳转到登陆页面)
public class LoginedFilter implements Filter { /** * 排除的地址 */ private Map<String, Boolean> ign ...
- Eclipse使用git发布项目到github
因为一直都在使用svn,今天尝试了下git,记录下来既是方便自己以后查看,也是分享一些经验! 废话不多说,撸起袖子就是干!!! 1.选中要上传的项目右键 2.选中git 3.在图上打钩,点击所要上传的 ...
- 【转载】如何在 Kaggle 首战中进入前 10%
本文转载自如何在 Kaggle 首战中进入前 10% 转载仅出于个人学习收藏,侵删 Introduction 本文采用署名 - 非商业性使用 - 禁止演绎 3.0 中国大陆许可协议进行许可.著作权由章 ...