title: 【概率论】4-6:协方差和相关性(Covariance and Correlation)

categories:

- Mathematic

- Probability

keywords:

- Covariance

- Correlation

- Properties of Covariance and Correlation

toc: true

date: 2018-03-26 10:44:07



Abstract: 本文介绍协方差和相关性的基础知识,以及部分性质

Keywords: Covariance,Correlation,Properties of Covariance and Correlation

开篇废话

概率论基础知识,基础工具已经进入到后半部分了,接下来后面就是对特定分布的研究和分析了,使用的工具就是我们已经介绍过的这些知识,融汇贯通是所有知识学习的唯一考量,掌握的知识点如果不能融入体系,一个月后就相当于没学过,但是成体系的知识不同,只要有一个根节点,就能联系到整个一颗知识树。

一杯敬朝阳,一杯敬月光

我们前面几个重要的数字特征针对的基本都是单一随机变量,我们很清楚,我们在实际操作中面对的基本都是多随机变量的联合分布,那么我们接下来就想研究下,两个或者多个随机变量之间是怎么互相影响的。

协方差(Covariance),相关性(Correlation)是度量随机变量间独立性的一种数字特征,但是必须注意,这两个数字特征度量的是随机变量之间的 线性相关程度 ,这里要好好注意一下!线性相关程度。

注意,协方差和相关性,只刻画线性相关程度!

Covariance

当我们将随机变量从一个扩展到多个,前面提到的期望,方差,中值等这些针对单个随机变量的数字特征就只能刻画联合分布的某一边缘分布的性质了。所以我们提出了新的数字特征,这个数字特征能描述两个随机变量之间有没有变化上的关系,比如他们经常同时变大或者变小,或者总是一个变大另一个变小,这种关联的关系。

通过这种数字特征,我们能够在求出若干个这种变量的方差,以及通过已经得到的几个随机变量的结果来预测其他几个。如果确定了这几个随机变量之间的关联,这些似乎都是可行的。

Definition Covariance. Let XXX and YYY be random variables having finite means.Let E(X)=μXE(X)=\mu_XE(X)=μX​ and E(Y)=μYE(Y)=\mu_YE(Y)=μY​ The covariance of X and Y,which is denoted by Cov(X,Y)Cov(X,Y)Cov(X,Y) ,is defined as

Cov(X,Y)=E[(X−μX)(Y−μY)]
Cov(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]
Cov(X,Y)=E[(X−μX​)(Y−μY​)]

if the expectation exists.

没错我们本章就是在研究期望,所以,本章所有的数字特征都来自期望,期望的存在性也左右了这些数字特征的存在性。

如果 X 和Y的都有有限的方差,那么期望存在,并且 Cov(X,Y)Cov(X,Y)Cov(X,Y) 存在且有限,但是正负不受限制,可以是正数,负数,0


举个

【概率论】4-6:协方差和相关性(Covariance and Correlation)的更多相关文章

  1. 利用GCTA工具计算复杂性状/特征(Complex Trait)的遗传相关性(genetic correlation)

    如文章"Genome-wide Complex Trait Analysis(GCTA)-全基因组复杂性状分析"中介绍的GCTA,是一款基于全基因组关联分析发展的分析工具,除了计算 ...

  2. 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差

    概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...

  3. 协方差cov

    摘录wiki如下(红色字体是特别标注的部分): http://zh.wikipedia.org/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE 协方差 协方差(Covariance) ...

  4. 统计学三大相关性系数:pearson,spearman,kendall

    目录 person correlation coefficient(皮尔森相关性系数-r) spearman correlation coefficient(斯皮尔曼相关性系数-p) kendall ...

  5. 相关性不一定等于因果性:从 Yule-Simpson’s Paradox 讲起

    1. 两件事伴随发生,不代表他们之间有因果关系 - 从一些荒诞相关性案例说起 在日常生活和数据分析中,我们可以得到大量相关性的结论,例如: 输入X变量,有98%置信度得到Y变量 只要努力,就能成功 只 ...

  6. ML一些简单的资源

    参考文献及推荐阅读 维基百科,http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm: 机器学习中的相似性度量,http://www.cnb ...

  7. ML二:NNSearch数据结构--二叉树

    wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...

  8. Python之Pandas库学习(一):简介

    官方文档 1. 安装Pandas windos下cmd:pip install pandas 导入pandas包:import pandas as pd 2. Series对象 带索引的一维数组 创建 ...

  9. Other-Website-Contents.md

    title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 999 ...

随机推荐

  1. (二十一)JSP基础

    定义 JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. JSP这门技术的最大的特点在于,写jsp就像在写html,但它相 ...

  2. (九)二进制文件在webservice中的处理(以DataHandler方式)

    一.需求 1. 客户端从服务端下载附件 2. 客户端上传附件到服务端 二.案例 本章通过DataHander的方式来进行传递. 注意:   1:接口中要定义@MTOM 2:方法中要使用@XmlMime ...

  3. Abp SSO

    官方的文档有个坑. 首先建立的应该是 .net core  MPA版本. 把文档上的startup.cs配置写入 MVC 项目中. 这样测试才能通过.不然,测试项目     var disco = a ...

  4. Asp.Net Core Linux环境下 找不到配置文件、静态文件的问题

    直接发布会找不到配置文件,和静态文件.需要先cd到项目文件夹,然后在发布.

  5. web.xml 转 学习!http://www.cnblogs.com/wkrbky/p/5929943.html

    1.spring 框架解决字符串编码问题:过滤器 CharacterEncodingFilter(filter-name) 2.在web.xml配置监听器ContextLoaderListener(l ...

  6. POJ2503(Babelfish)--简单字典树

    思路:就是用一个字典树翻译单词的问题,我们用题目中给出的看不懂的那些单词建树,这样到每个单词的叶子结点中存放原来对应的单词就好. 这样查询到某个单词时输出叶子结点存的就行,查不到就"en&q ...

  7. jQuery异步请求ajax()之complete参数详解

    请求完成后回调函数 (请求success 和 error之后均调用).这个回调函数得到2个参数:XMLHTTPRequest) 对象和一个描述请求状态的字符串("success", ...

  8. stm32 printf重定向

    printf函数调用fputc int fputc(int ch, FILE *p) { USART_SendData(USART1, ch); //重定向到串口 while(USART_GetFla ...

  9. 程哥带你学python-[第一章-初识Python]

    Python是一种解释型.面向对象.动态数据类型的高级程序设计语言. Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年. 像Perl语言一样, Pyt ...

  10. 使用CDS view开发SAP Marketing contact的facet追溯工具

    这篇SAP社区博客里,我的一位同事介绍了SAP Marketing里contact facet数据模型的存储表: https://blogs.sap.com/2016/07/01/how-does-s ...