实例一:

teacher.log

http://bigdata.baidu.cn/zhangsan
http://bigdata.baidu.cn/zhangsan
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/lisi
http://bigdata.baidu.cn/wangwu
http://bigdata.baidu.cn/wangwu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/xiaoxu
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://javaee.baidu.cn/laoyang
http://php.baidu.cn/laoli
http://php.baidu.cn/laoliu
http://php.baidu.cn/laoli
http://php.baidu.cn/laoli

全局topn  组内topn

代码:

package dayo1

import java.net.URL

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object teacher2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[1]" ) val sc = new SparkContext ( conf ) val lines = sc.textFile ( "E:\\teacher.log" ) val overAll: RDD[((String, String), Int)] = lines.map ( tp => {
val teacher: String = tp.split ( "/" ).last
val host = new URL ( tp ).getHost
val subject = host.substring ( , host.indexOf ( "." ) )
((teacher, subject), )
} )
//所有科目和老师的前三
val topOverAll = overAll.reduceByKey ( _ + _ ).sortBy ( -_._2 ).take ( ).foreach ( println ) //每个科目前两名的老师
val topGroup = overAll.reduceByKey ( _ + _ ).groupBy ( _._1._2 ).mapValues ( _.toList.sortBy ( -_._2 ).take ( ) ).foreach ( println )
sc.stop () }
}

实例二:

去重

file1:
-- a
-- b
-- c
-- d
-- a
-- b
-- c
-- c file2:
-- b
-- a
-- b
-- d
-- a
-- c
-- d
-- c

代码:

package dayo1

import org.apache.spark.{SparkConf, SparkContext}

object distinct {
def main(args: Array[String]): Unit = {
val cof = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[1]" ) val sc = new SparkContext ( cof ) val file1 = sc.textFile ( "E:\\file1.txt" )
val file2 = sc.textFile ( "E:\\file2.txt" )
val list = file1.union ( file2 ).distinct ().sortBy ( tp => tp )
list.foreach ( println )
sc.stop ()
}
}

实例三:

temperature.txt

0067011990999991950051507004888888889999999N9++
0067011990999991950051512004888888889999999N9++
0067011990999991950051518004888888889999999N9-+
0067011990999991949032412004888888889999999N9++
0067011990999991950032418004888888880500001N9++
0067011990999991950051507004888888880500001N9++

需求:分析每年的最高温度

代码:

package dayo1

import org.apache.spark.{SparkConf, SparkContext}

/**
* 0067011990999991950051507004888888889999999N9+00001+9999999999999999999999
* 0067011990999991950051512004888888889999999N9+00221+9999999999999999999999
* 0067011990999991950051518004888888889999999N9-00111+9999999999999999999999
* 0067011990999991949032412004888888889999999N9+01111+9999999999999999999999
* 0067011990999991950032418004888888880500001N9+00001+9999999999999999999999
* 0067011990999991950051507004888888880500001N9+00781+9999999999999999999999
*
* 12345678911234567892123456789312345678941234567895123456789612345678971234
* 需求:分析每年的最高温度
* 数据说明:
*
*
* 第15-19个字符是year 6-9
*
* 第45-50位是温度表示,+表示零上 -表示零下,且温度的值不能是9999,9999表示异常数据
*
* 第50位值只能是0、1、4、5、9几个数字
*/
object temperature {
def main(args: Array[String]): Unit = {
val cof = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[*]" )
val sc = new SparkContext ( cof ) val lines = sc.textFile ( "E:\\temperature.txt" ) val yearAndTemp = lines.filter ( tp => {
var temp =
val query = tp.charAt ( ).toString //val query=tp.subString(50,51)
if (tp.charAt ( ).equals ( "+" )) {
temp = tp.substring ( , ).toInt
} else {
temp = tp.substring ( , ).toInt
}
temp != && query.matches ( "[01459]" ) } ).map ( tp => { val year = tp.substring ( , )
var temp =
if (tp.charAt ( ).equals ( "+" )) {
temp = tp.substring ( , ).toInt
} else {
temp = tp.substring ( , ).toInt
} (year, temp)
} ) val res = yearAndTemp.reduceByKey ( (x, y) => if (x > y) x else y ) res.foreach ( tp => println ( "year:" + tp._1 + " temp:" + tp._2 ) )
sc.stop ()
}
}

RDD实例的更多相关文章

  1. Spark RDD编程核心

    一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式 ...

  2. Spark RDD 操作

    1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...

  3. spark streaming之三 rdd,job的动态生成以及动态调度

    前面一篇讲到了,DAG静态模板的生成.那么spark streaming会在每一个batch时间一到,就会根据DAG所形成的逻辑以及物理依赖链(dependencies)动态生成RDD以及由这些RDD ...

  4. spark 源码分析之一 -- RDD的四种依赖关系

    RDD的四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如 ...

  5. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  6. Spark Streaming揭秘 Day15 No Receivers方式思考

    Spark Streaming揭秘 Day15 No Receivers方式思考 在前面也有比较多的篇幅介绍了Receiver在SparkStreaming中的应用,但是我们也会发现,传统的Recei ...

  7. spark 启动job的流程分析

    从WordCount開始分析 编写一个样例程序 编写一个从HDFS中读取并计算wordcount的样例程序: packageorg.apache.spark.examples importorg.ap ...

  8. 《图解Spark:核心技术与案例实战》作者经验谈

    1,看您有维护博客,还利用业余时间著书,在技术输出.自我提升以及本职工作的时间利用上您有没有什么心得和大家分享?(也可以包含一些您写书的小故事.)回答:在工作之余能够写博客.著书主要对技术的坚持和热爱 ...

  9. SparkStreaming流处理

    一.Spark Streaming的介绍 1.       流处理 流式处理(Stream Processing).流式处理就是指源源不断的数据流过系统时,系统能够不停地连续计算.所以流式处理没有什么 ...

随机推荐

  1. jQuery方法介绍

    //jQuery与JavaScript在申明变量的区别: var $variable = jQuery对象 var variable = DOM对象 $variabl[0] //jQuery对象转换成 ...

  2. css全部理解

    如何设置标签样式 给标签设置长宽 只有块儿级标签才可以设置长宽 行内标签设置了没有任何作用(仅仅只取决于内部文本值) 字体颜色 color后面可以跟多种颜色数据 颜色英文 red #06a0de 直接 ...

  3. 直接插入排序java代码

    //直接插入排序(无哨兵) 通过测试 public class InsertSortTest{ public static void insertSort(int[] arr) { for (int ...

  4. [Algorithm] Finding Prime numbers - Sieve of Eratosthenes

    Given a number N, the output should be the all the prime numbers which is less than N. The solution ...

  5. 题解 【POJ1722】 SUBTRACT

    先讲下题目意思 给定一个长度为\(n\)的序列\((1 \leq n \leq 100)\), 每次合并两个元素\(i,i+1\),即将\(i,i+1\)变为一个新的元素,权值为\(a[i]-a[i+ ...

  6. windows查看服务的状态

    方法一:运行窗口操作 按下win+r键,在运行窗口中输入services.msc,点击[确定]按钮,即可打开服务. 如下图所示: 方法二:按部就班 1)此电脑—右键—管理 2)点击[服务和应用程序]按 ...

  7. IT行业常见职位英文缩写

    1.PG                Programer                                                            程序员 2.AA    ...

  8. React Native 项目常用第三方组件汇总

    React Native 项目常用第三方组件汇总 https://www.jianshu.com/p/d9cd9a868764?utm_campaign=maleskine&utm_conte ...

  9. Linux可变参数打印日志(二)

    #include<stdio.h> #include<stdlib.h> #include<stdarg.h> #include<string.h> # ...

  10. BOM基础笔记

    BOM基础 BOM对浏览器的一些操作 1.打开.关闭窗口 •open –蓝色理想运行代码功能 window.open('http://www.baidu.com/', '_self'); <!d ...