Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to. 

1. the benefit of complex network:

complex network theory has been particularly successful in providing unifying统一的 concepts and methods for understanding the structure and dynamics of complex systems in many areas of science, ranging from power grids over social networks to neuronal networks.

2. the network is recurrence;

3. VGs obtained from periodic signals appear as a concatenation of a finite number of network motifs. ?really?

4. 如何衡量一个高的节点, 根据节点的度/roles of graphs.

the degree of a vertex in the VG characterizes the maximality property. however, this finding is not completely general. since there can be specific conditions (e.g., a concave behavior over a certain period of time) which can lead to highly connected vertices that do not coincide with local maxima, for example, in case of a Conway series.

并不是只有高的节点degree会高, 这结论不具有一般性, for example, in conway series, 最低的凹点会有更多的边.

5. 邻边链接的重要性: the trivial connection of neighboring points in time in the VG enhances the signature of structures due to autocorrelations in the record under study.

邻边 VS 子相关.

Although this might be desirable for VGs and HVGs since some of their respective network properties are explicitly related with the presence of serial dependences (e.g., the typical scale of the degree distribution of HVGs, cf. Luque et al. 2009), there could be situations in which one is interested in removing the corresponding effects. In such cases, it is possible to introduce a minimum time difference for two observations to be connected in the network for removing the effect of slowly decaying autodependences, which would correspond to the Theiler window in other concepts of nonlinear time series analysis (Theiler 1990, Donner et al. 2010). 思考: 我需不需要include它们之间的自相关性.

6. 引入时间差来限制连接的两个观测值.

7. You need to consider possible origins of pitfalls of VG analysis applied to Energy consumption.

what's the pitfalls of VG analysis of your research right now.

8. what kind of information can be obtained from VG analysis.

i. four distributions of vertex properties: distributions of degree; local clustering coefficient; closeness centrality; and betweenness centrality.

ii. the temporal changes in the VG properties: network transitivity T and average path length L. running windows 36o and a mutual offset of 30 days.

9. Summary:

由图分析TS 的两大分支, recurrence networks (Donner) and visibility graphs (Lacasa).

However, the explicit interpretation of more complex local and global network characteristics in a visibility graph is less obvious than for recurrence networks and needs to be fully explored in future work prior to their wide potential application to real-world problems.

VG 存在的问题: 网络特征的可解释性.

the emergence of different topological features in VG reflects the time evolution of the network's architecture.


基础概念:

1. 中心性(Centrality)是社交网络分析(Social network analysis, SNA)中常用的一个概念,用以表达社交网络中一个点或者一个人在整个网络中所在中心的程度,这个程度用数字来表示就被称作为中心度(也就是通过知道一个节点的中心性来了解判断这个节点在这个网络中所占据的重要性的概念).

测定中心度方法的不同,可以分为度中心度(Degree centrality),接近中心度(或紧密中心度,Closeness centrality),中介中心度(或间距中心度,Betweenness centrality)等。more.

2. local clustering coefficent. more

几个用于描述网络节点距离的参数

  • Average distance: 这个很好理解,就是所有两两节点之间的最短距离的平均值,最直接的描述了图的紧密程度。
  • Eccentricity:这个参数描述的是从任意一个节点,到达其他节点的最大距离
  • Diameter:图中的最大两个节点间的距离
  • Radius:图中的最小两个节点间的距离
  • Periphery: 和 Diameter 对应,那些最大节点距离等于 diameter 的节点
  • Center: 和 Radius 对应,那些最大节点距离等于 radius 的节点

3. 自相关性:

金融时间序列一般由固定趋势、季节性变动和随机因素组成。如果时间序列的随机因素在各时间点上完全独立没有任何联系,那么我们很难对这一部分进行建模。幸运的是,对于一般的金融时间序列,在剔除固定趋势和季节效应后,时间序列在不同时点上是存在相关性的,这种自相关特征是我们对时间序列建模的基础。

解决

Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls的更多相关文章

  1. Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph

    Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...

  2. Paper: A novel visibility graph transformation of time series into weighted networks

    1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...

  3. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  4. Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy

    Their data five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point. t ...

  5. SpaceSyntax【空间句法】之DepthMapX学习:第一篇 数据的输入 与 能做哪些分析

    两部分,1需要喂什么东西给软件,2它能干什么(输出什么东西在下一篇讲) 博客园/B站/知乎/CSDN @秋意正寒 转载请在头部附上源地址 目录:https://www.cnblogs.com/onsu ...

  6. malware analysis、Sandbox Principles、Design && Implementation

    catalog . 引言 . sandbox introduction . Sandboxie . seccomp(short for secure computing mode): API级沙箱 . ...

  7. [LeetCode#261] Graph Valid Tree

    Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...

  8. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  9. Autocorrelation in Time Series Data

    Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...

随机推荐

  1. Spring Boot源码(八):Spring AOP源码

    关于spring aop的应用参见:Spring AOP-基于@AspectJ风格 spring在初始化容器时就会生成代理对象: 关于创建bean的源码参见:Spring Boot源码(六):Bean ...

  2. 全局程序集缓存工具(Gacutil.exe)用法详解

    全局程序集缓存工具 (Gacutil.exe) 全局程序集缓存工具使您可以查看和操作全局程序集缓存和下载缓存的内容. 复制 gacutil [options] [assemblyName | asse ...

  3. 【database】oracle集合 - Associative Arrays、Varrays、Nested Tables

    前言 参考oracle官方文档:PL/SQL Language Reference 11g Release 2  -  5 PL/SQL Collections and Records 可以去看下文档 ...

  4. yamlapi接口测试框架

    1.思路: yamlapi支持unittest与pytest两种运行模式, yamlapi即为yaml文件+api测试的缩写, 可以看作是一个脚手架工具, 可以快速生成项目的各个目录与文件, 只需维护 ...

  5. USB闪存驱动器未显示在MacOS的Finder或磁盘工具上?为什么Mac无法识别USB该如何解决?

    您可能会在Mac上无法显示的闪存驱动器上形成困扰.您确定驱动器正常,但Mac计算机无法检测到.  阅读这篇文章,闪存驱动器未显示在MacOS的Finder或磁盘工具上?为什么Mac无法识别USB该如何 ...

  6. 《操作系统真象还原》BIOS

    以下是读本书第二章的收获. 记得我大学学习操作系统的时候会遇到一些奇奇怪怪的问题,因为觉得问题太奇怪了,所以羞于问老师.诸如ROM到底是个什么东西:如果用内存映射的方式访问外部设备,是不是内存条里专门 ...

  7. js微信禁用右上角的分享按钮,和vue中微信页面禁用右上角的分享按钮的问题

    1.隐藏微信网页右上角的按钮 document.addEventListener('WeixinJSBridgeReady', function onBridgeReady() { // 通过下面这个 ...

  8. PAT (Advanced Level) Practice 1120 Friend Numbers (20 分) (set)

    Two integers are called "friend numbers" if they share the same sum of their digits, and t ...

  9. 06-SV随机化

    1.受约束的随机测试法(CRT) 随着设计变得越来越大,要产生一个完整的激励集来测试设计的功能变得越来越困难.解决的办法是采用受约束的随机测试法自动产生测试集.CRT环境比定向测试的环境复杂,不仅需要 ...

  10. One CLI for webpack must be installed. These are recommended choices, delivered as separate packages:

    C:\Users\arn>webpack -v One CLI for webpack must be installed. These are recommended choices, del ...