PKU blog about this paper

Basic knowledge: 

1. what is time-varying graphs?

time-varying graph VS static graph.

a time-varying graph - an ordered sequence of graph instances.

2. how to measure similarity or dissimilarly between graphs?

way1: map the graphs into a feature space and then define distances on this space.

way2: graph comparison with known node correspondences.

way3: graph comparison without unknown node correspondences.

3. how to visualize time-varying graphs?

two major categories: animation and timelines.

4. how to analysis static graph and visualize static graphs?

Static graph visualization: use variations on node-link visualizations to display graphs.

For dense/clutter graphs, -------> edge bundling.

Questions:

2. how to use persistent homology to capture topological features of time-varying graphs.

  1. how to embed the graph into a metric space.  then topological techniques can be applied into this metric space.

Methodology:

basic rules: use persistent homology to identify and compare features in a time-varying graph.

Their visual design goal: identify high-level structural changes in a time-varying graph.

time-varying graph: an ordered sequence of static graph instances.

Methods:

  1. each graph is embedded into a metric space. G = {G_1, G_2,... G_i...} This yields a symmetric distance matrixd d_i,  d_sp(x,y) is the shortest path distance between node x and node y.
  2. extract topological features from each G_i by using persistnet homology to its metric space.
  3. calculate the distance between persistence diagrams and then project them by using classical multi-dimensional scaling(MDS).

Knowledgebase:

1. Dijkstra's algotithm: 迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题

2. Quantitative Journey blog about TDA: topological data analysis

Visual detection of structural changes in time-varying graphs using persistent homology的更多相关文章

  1. [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记

    http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...

  2. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  3. Image Processing and Analysis_8_Edge Detection:Theory of Edge Detection ——1980

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  4. 斯坦福CS课程列表

    http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...

  5. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. Image Processing and Computer Vision_Review:Local Invariant Feature Detectors: A Survey——2007.11

    翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来 ...

  8. OKVIS(一)初始化流程及代码结构

    OKVIS代码结构: okvis_apps: your own app okvis_ceres: backend main code, estimator, error term;  okvis_co ...

  9. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

随机推荐

  1. maven第一次创建项目太慢解决方法

    问题: 第一次用maven创建项目的时候,因为本地仓库中没有jar包,需要从中央仓库下载,所以会比较慢 解决方法: 因为从中央仓库下载默认使用的国外的镜像下载,速度比较慢,我们可以把镜像修改为从阿里云 ...

  2. 【Git】git使用 - rebase的使用

    官方参考指南: Pro Git Book v2, § rebasing. English Pro Git Book v2, § rebase:衍合. 中文版 (建议还是看一下英文原版,就当熟练英语.) ...

  3. c#中for与foreach的使用

    for循环示例: static void Main(string[] args) { string[] s = new string[] { "a,b,c,d,e,f,g" }; ...

  4. 【NLP】暑假课作业1 - 中文分词(前向匹配算法实现)

    作业任务: 使用98年人民日报语料库进行中文分词训练及测试. 作业输入: 98年人民日报语料库(1998-01-105-带音.txt),用80%的数据作为训练集,20%的数据作为验证集. 运行环境: ...

  5. 【Debian学徒记事】Debian快速呼出Terminal终端

    Debian快速呼出Terminal终端 书接上回,Debian已经安装完毕 失踪的Ctrl+Alt+T 安装完毕启动,我发现了剑很诡异的事,Ctrl+Alt+T居然失灵了 (在多次测试后发现,Deb ...

  6. HTML5音频(自定义mp3播放器源码)

    audio对象 src兼容.ogg .wav .mp3 <audio controls src='data/imooc.wav'></audio> width autoplay ...

  7. mui下拉刷新上拉加载

    新外卖商家端主页订单大厅页面 使用mui双webview,实现下拉刷新上拉加载 主页面: order_index.html <!doctype html> <html> < ...

  8. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  9. Cows Of The Round Table【DFS】

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAz0AAAKiCAIAAABzTSUAAAAgAElEQVR4Aey9C5RnWVXff4GBUR6j8u ...

  10. 问题 B: 基础排序III:归并排序

    #include <cstdio> #include <vector> #include <algorithm> using namespace std; void ...