题目链接

The problem is quite simple. You're given a number N and a positive integer K. Tell if N can be represented as a sum of K prime numbers (not necessarily distinct).

Input Format
The first line contains a single integer T, denoting the number of test cases. 
Each of the next T lines contains two positive integers, N & K, separated by a single space.

Output Format
For every test case, output "Yes" or "No" (without quotes).

Constraints
1 <= T <= 5000 
1 <= N <= 1012 
1 <= K <= 1012

Sample Input

2
10 2
1 6

Sample Output

Yes
No

Explanation

In the first case, 10 can be written as 5 + 5, and 5 is a prime number. In the second case, 1 cannot be represented as a sum of prime numbers, because there are no prime numbers less than 1.

题意:给两个正整数n和k,问能否将n分解为k个素数的和(可以出现相同的)。

思路:本题涉及的知识点有哥德巴赫猜想(任何大于2的偶数都可以拆分成两个素数的和),

还有Miller-Rabin素数测试,一般使用的素数测试是O(sqrt(n))复杂度的,无法满足大整数的要求。

费马小定理: 如果p是一个素数,且(0<a<p),则

例如,67是一个素数,则2^66 mod 67=1.

利用费马小定理,对于给定的整数n,可以设计一个素数判定算法.通过计算d=2^(n-1) mod n 来判定整数n的素性.当d≠1时,n肯定不是素数;当d=1时,n则很可能是素数,但也存在合数n,使得 .例如,满足此条件的最小合数是n=341.为了提高测试的准确性,我们可以随机地选取整数1<a<n-1,然后用条件 来判定整数n的素性.例如对于n=341,取a=3时,有 ,故可判定n不是素数.

费马小定理毕竟只是素数判定的一个必要条件.满足费马小定理条件的整数n未必全是素数.有些合数也满足费马小定理的条件.这些合数被称作Carmichael数,前3个Carmichael数是561,1105,1729. Carmichael数是非常少的.在1~100000000范围内的整数中,只有255个Carmichael数.

利用下面的二次探测定理可以对上面的素数判定算法作进一步改进,以避免将Carmichael数当作素数.

二次探测定理  如果p是一个素数,且0<x<p,则方程x*x≡1(mod p)的解为x=1,p-1.

事实上, x*x≡1(mod p)等价于 x*x-1≡0(mod p).由此可知;

(x-1)(x+1) ≡1(mod p)

故p必须整除x-1或x+1.由p是素数且 0<x<p,推出x=1或x=p-1.

利用二次探测定理,我们可以在利用费马小定理计算 a^(n-1) mod n的过程中增加对于整数n的二次探测.一旦发现违背二次探测条件,即可得出n不是素数的结论.

Accepted Code:

 #include <ctime>
#include <iostream>
using namespace std; typedef long long LL; LL mulMod(LL a, LL b, LL c) {
LL res = ;
while (b) {
if (b&) if ((res = (res + a)) >= c) res -= c;
a = a + a;
if (a >= c) a -= c;
b >>= ;
}
return res;
} LL powMod(LL a, LL b, LL c) {
LL res = ;
while (b) {
if (b&) res = mulMod(res, a, c);
a = mulMod(a, a, c);
b >>= ;
}
return res;
} bool isPrime(LL n) {
if (n <= ) return false;
if (n == ) return true;
if (n & == ) return false;
srand((LL)time());
LL u = n - , k = , pre;
while (!(u&)) u >>= , k++;
for (int t = ; t < ; t++) {
LL a = rand() % (n - ) + ;
LL ans = powMod(a, n - , n);
for (int i = ; i < k; i++) {
pre = ans;
ans = mulMod(ans, ans, n);
if (ans == && (pre != && pre != n - )) return false;
pre = ans;
}
if (ans != ) return false;
}
return true;
} int main(void) {
ios::sync_with_stdio(false);
int T;
cin >> T;
while (T--) {
LL n, k;
cin >> n >> k;
if (n < * k) {
cout << "No" << endl;
} else {
if (k == ) {
if (isPrime(n)) cout << "Yes" << endl;
else cout << "No" << endl;
} else if (k == ) {
if (n % == ) cout << "Yes" << endl;
else if (isPrime(n - )) cout << "Yes" << endl;
else cout << "No" << endl;
} else {
cout << "Yes" << endl;
}
}
}
return ;
}

Hackerrank--Prime Sum的更多相关文章

  1. Project Euler 50 Consecutive prime sum

    题意: 素数41可以写成六个连续素数的和: 41 = 2 + 3 + 5 + 7 + 11 + 13 在小于一百的素数中,41能够被写成最多的连续素数的和. 在小于一千的素数中,953能够被写成最多的 ...

  2. SGU 231.Prime Sum

    题意: 求有多少对质数(a,b)满足a<=b 且a+b也为质数.(a+b<=10^6) Solution: 除了2之外的质数都是奇数,两个奇数的和是偶数,不可能是质数.所以题目就是求差为2 ...

  3. SGU 231 Prime Sum 求&lt;=n内有多少对素数(a,b)使得a+b也为素数 规律题

    题目链接:contest=0&problem=231">点击打开链接 题意: 求<=n内有多少对素数(a,b)使得a+b也为素数 思路: 我们发现全部素数间隔都是> ...

  4. 4190. Prime Palindromes 一亿以内的质数回文数

    Description The number 151 is a prime palindrome because it is both a prime number and a palindrome ...

  5. Html 特殊符号

    HTML特殊符号对照表 特殊符号 命名实体 十进制编码 特殊符号 命名实体 十进制编码 Α Α Α Β Β Β Γ Γ Γ Δ Δ Δ Ε Ε Ε Ζ Ζ Ζ Η Η Η Θ Θ Θ Ι Ι Ι Κ ...

  6. HTML特殊符号汇总

    较常用的飘黄处理了 ´ ´ © © > > µ µ ® ® & & ° ° ¡ ¡   » » ¦ ¦ ÷ ÷ ¿ ¿ ¬ ¬ § § • • ½ ½ « « ¶ ¶ ¨ ...

  7. html特殊符号

    1                     ´ ´ © © > > µ µ ® ® & & ° ° ¡ ¡     » » ¦ ¦ ÷ ÷ ¿ ¿ ¬ ¬ § § • • ...

  8. 【HTML】HTML特殊符号【转http://www.cnblogs.com/web-d/archive/2010/04/16/1713298.html】

    HTML特殊字符编码大全:往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全.                   ...

  9. PE的一些水 3-50

    T3: 分解质因数. lalala T4: 暴模. 然而数学方法怎么搞?---->也就是怎么手算?... 于是看了一下讨论区...发现原来我的数学已经低于小学生水平了... 我们把答案abccb ...

  10. 网页特殊符号HTML代码大全

    往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全.   ´ ´ © © > > µ µ ® ® &a ...

随机推荐

  1. Python基础知识之3——运算符与表达式

    一.概念: 运算符:运算符用于执行程序代码运算,会针对一个以上操作数项目来进行运算.比如10+4=14,其中操作数是 10 和 4,运算符是“+” . Python 语言主要支持运算符类型有:算术运算 ...

  2. Leetcode92. Reverse Linked List II反转链表

    反转从位置 m 到 n 的链表.请使用一趟扫描完成反转. 说明: 1 ≤ m ≤ n ≤ 链表长度. 示例: 输入: 1->2->3->4->5->NULL, m = 2 ...

  3. 用shell编写小九九乘法表程序

    1.使用for循环 运行结果: 2.方法二:for循环 运行结果: 备注: 1. echo -n 的意思是不自动换行,因为在linux shell中 echo到最后一个字符时会自动换行的,所以echo ...

  4. VS2010版的Speex音频处理模块(附源码+测试demo)

    开源的Speex代码内部包含了VS2003,05,08工程,但是直接编译总有一些要设置的地方,虽说也不是很复杂,但是对于不是很了解VS的同学来说还是要折腾一阵,所以我弄了一个可以直接使用的版本,当然是 ...

  5. 0818NOIP模拟测试赛后总结

    又挂了…… 120 rank19. 第一次两个机房考不同的题目.一开始并不知道应该做哪套题目. 不明真相的吃瓜群众决定先点开B套.通读三道题,只是觉得T2好水.似乎是红题难度吧……(后来证明是我读错题 ...

  6. 「题解」:[BZOJ4358]permu

    问题: permu 时间限制: 30 Sec  内存限制: 512 MB 题面 题目描述 给出一个长度为n的排列P(P1,P2,...Pn),以及m个询问.每次询问某个区间[l,r]中,最长的值域 连 ...

  7. python中检测mysql的主键唯一性异常

    有两种方法: 1.直接检测是什么异常(查mysql文档找出异常代码) import os import mysql_operate.mysql_connect as mysql import re d ...

  8. php中Sessions

    PHP Sessions  Session 中文译名叫做“会话”,其本来的含义是指有始有终的一系列动作/消息. PHP session 变量用于存储关于用户会话(session)的信息,或者更改用户会 ...

  9. mysql插入数据显示:Incorrect datetime value: '0000-00-00 00:00:00'

    1. 在进行mysql数据插入的时候,由于mysql的版本为5.7.1,部分功能已经升级,导致在datetime数据类型的影响下出现错误:   数据插入: mysql>insert into j ...

  10. java编程题古典算法之兔子问题

    1.题目如下. 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 分析每个月的兔子对数: 1---- ...