缩点练习

洛谷 P3387 【模板】缩点

缩点

解题思路:

都说是模板了...先缩点把有环图转换成DAG

然后拓扑排序即可

#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
//clock_t c1 = clock();
//std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 5e5 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
int head[MAXN], head1[MAXN];
int in[MAXN];
int n, m;
int vis[MAXN];
int dfn[MAXN], low[MAXN], dep;
int sta[MAXN], top = -1;
int tot; //强联通分量编号
int dis[MAXN];
int p[MAXN];
int num[MAXN];
struct Edge
{
int u, v, Next;
Edge(int _u = 0, int _v = 0, int _Next = 0) { u = _u, v = _v, Next = _Next; }
} e[MAXN << 1], ed[MAXN << 1];
int cnt = -1;
void add(int u, int v)
{
e[++cnt].v = v;
e[cnt].u = u;
e[cnt].Next = head[u];
head[u] = cnt;
}
void tarjan(int now)
{
dfn[now] = low[now] = ++dep;
sta[++top] = now;
vis[now] = 1;
for (int i = head[now]; ~i; i = e[i].Next)
{
int v = e[i].v;
if (!dfn[v])
{
tarjan(v);
low[now] = min(low[now], low[v]);
}
else if (vis[v])
low[now] = min(low[now], low[v]);
}
if (dfn[now] == low[now])
{
++tot;
while (sta[top] != now)
{
vis[sta[top]] = 0;
num[sta[top]] = tot;
dis[tot] += p[sta[top--]];
}
vis[sta[top]] = 0;
dis[tot] += p[sta[top]];
num[sta[top--]] = tot;
}
}
int dp[MAXN];
int topo()
{
queue<int> q;
int ans = -inf;
int k = 0;
for (int i = 1; i <= tot; i++)
if (!in[i])
q.push(i), dp[i] = dis[i];
while (!q.empty())
{
int now = q.front();
q.pop();
k++;
for (int i = head1[now]; ~i; i = ed[i].Next)
{
int v = ed[i].v;
in[v]--;
dp[v] = max(dp[v], dp[now] + dis[v]);
if (!in[v])
q.push(v);
}
}
for (int i = 1; i <= tot; i++)
ans = max(ans, dp[i]);
return ans;
}
int main()
{
memset(head, -1, sizeof(head));
memset(head1, -1, sizeof(head1));
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%d", &p[i]);
for (int i = 0; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for (int i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
cnt = -1;
for (int i = 0; i < m; i++)
{
int x = e[i].u, y = e[i].v;
if (num[x] != num[y]) //不在一个强连通分量
{
int u = num[x], v = num[y];
ed[++cnt].u = u;
ed[cnt].v = v;
ed[cnt].Next = head1[u];
head1[u] = cnt;
in[v]++;
}
}
printf("%d\n", topo());
return 0;
}

poj 2196 Popular Cows

Popular Cows

Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is

popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.

Input

  • Line 1: Two space-separated integers, N and M

  • Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

    Output

  • Line 1: A single integer that is the number of cows who are considered popular by every other cow.

Sample Input

3 3

1 2

2 1

2 3

Sample Output

1

解题思路:

将原图缩点之后重新建图,那么被所有牛崇拜的牛必然在出度为0的一个强连通分量内,如果有一个以上出度为0的强联通分量,则说明不存在被所有牛崇拜的牛,如果出度为0的强联通分量为1那么直接输出该强联通分量内牛的数量即可

#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <set>
#include <vector>
#include <cctype>
#include <iomanip>
#include <sstream>
#include <climits>
#include <queue>
#include <stack>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
//clock_t c1 = clock();
//std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 5e5 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
int n, m;
int head[MAXN], dis[MAXN];
int in[MAXN];
struct Edge
{
int u, v, Next;
Edge(int _u = 0, int _v = 0, int _Next = 0) { u = _u, v = _v, Next = _Next; }
} e[MAXN], ed[MAXN];
int cnt = -1;
void add(int u, int v)
{
e[++cnt].u = u;
e[cnt].v = v;
e[cnt].Next = head[u];
head[u] = cnt;
}
int dfn[MAXN], low[MAXN], dep;
int tot;
int sta[MAXN], top = -1, vis[MAXN];
int num[MAXN];
void tarjan(int now)
{
dfn[now] = low[now] = ++dep;
sta[++top] = now;
vis[now] = 1;
for (int i = head[now]; ~i; i = e[i].Next)
{
int v = e[i].v;
if (!dfn[v])
{
tarjan(v);
low[now] = min(low[now], low[v]);
}
else if (vis[v])
low[now] = min(low[now], low[v]);
}
if (dfn[now] == low[now])
{
tot++;
while (sta[top] != now)
{
num[sta[top]] = tot;
dis[tot]++;
vis[sta[top--]] = 0;
}
vis[sta[top]] = 0;
dis[tot]++;
num[sta[top--]] = tot;
}
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for (int i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
//重新建图
for (int i = 0; i < m; i++)
{
int x = e[i].u, y = e[i].v;
if (num[x] != num[y])
{
int u = num[x], v = num[y];
in[u]++; //这里是出度....
}
}
int tt = 0;
int ans = 0;
for (int i = 1; i <= tot; i++)
{
if (!in[i])
{
tt++;
ans = max(ans, dis[i]);
}
}
if (tt > 1)
ans = 0;
printf("%d\n", ans);
return 0;
}
/*
7 8
1 2
2 4
4 6
6 7
7 6
1 3
3 5
5 6 */

tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows的更多相关文章

  1. poj 2186 Popular Cows (强连通分量+缩点)

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  2. poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

    题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  3. poj 2186 Popular Cows【tarjan求scc个数&&缩点】【求一个图中可以到达其余所有任意点的点的个数】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27698   Accepted: 11148 De ...

  4. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  5. poj 2186 Popular Cows tarjan

    Popular Cows Description Every cow's dream is to become the most popular cow in the herd. In a herd ...

  6. POJ 2186 Popular Cows tarjan缩点算法

    题意:给出一个有向图代表牛和牛喜欢的关系,且喜欢关系具有传递性,求出能被所有牛喜欢的牛的总数(除了它自己以外的牛,或者它很自恋). 思路:这个的难处在于这是一个有环的图,对此我们可以使用tarjan算 ...

  7. POJ 2186 Popular Cows(强连通分量缩点)

    题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...

  8. [poj 2186]Popular Cows[Tarjan强连通分量]

    题意: 有一群牛, a会认为b很帅, 且这种认为是传递的. 问有多少头牛被其他所有牛认为很帅~ 思路: 关键就是分析出缩点之后的有向树只能有一个叶子节点(出度为0). 做法就是Tarjan之后缩点统计 ...

  9. poj 2186 Popular Cows :求能被有多少点是能被所有点到达的点 tarjan O(E)

    /** problem: http://poj.org/problem?id=2186 当出度为0的点(可能是缩点后的点)只有一个时就存在被所有牛崇拜的牛 因为如果存在有两个及以上出度为0的点的话,他 ...

随机推荐

  1. 前端vue——阿里图标的使用方法

    阿里图标库的官方网址:https://www.iconfont.cn/ 使用前需要先登录,这里有三种登录方式,本人使用的是新浪微博登录 第一步:找到你需要的图标,点击添加入库 第二步:点击右上角的购物 ...

  2. Web基础了解版12-上传下载

    上传 两个步骤: 用户在页面中选择要上传的文件,然后将请求提交到Servlet Servlet收到请求,解析用户上传的文件,然后将文件存储到服务器 上传文件表单 <form action=&qu ...

  3. 利用log4net创建日志文件时过滤日志,这是坑还是?

    前言 网上貌似没有太多关于log4net过滤日志的资料,在研究过程中发现一点小问题,这里做下记录,希望对后续有用到的童鞋起到一丢丢帮助作用. log4net日志过滤 由于是在.NET Core中使用, ...

  4. 配置ca服务器和http,mail加密

    一·CA介绍 certificate authority   数字证书授权中心 被通信双方信任的.独立的第三方机构 负责证书颁发.验证.撤销等管理 数字证书 经证书授权中心数字签名的包含公开密钥拥有者 ...

  5. CF854C Planning优先队列|set

    C. Planning 传送门 Helen works in Metropolis airport. She is responsible for creating a departure sched ...

  6. 视频分片上传+C#后端合并

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 通过例子学习C++(三)最大公约数,并知其然

    本文是通过例子学习C++的第三篇,通过这个例子可以快速入门c++相关的语法. 题目要求:输入两个整数,求其大公约数. 解答方法一:两个数的最大公约数,是这两个数中的小数,或者是这2个数的公约数中的最大 ...

  8. 【Java基础总结】泛型

    泛型实现了参数化类型的概念,使代码可以应用于多种类型. 1. 泛型类 声明的泛型类型静态方法不能使用 class Tools<T>{ private T t; public void se ...

  9. Scala与Mongodb实践1-----mongodbCRUD

    目的:如何使用MongoDB之前提供有关Scala驱动程序及其异步API. 1.现有条件 IDEA中的:Scala+sbt+SDK mongodb-scala-driver的网址:http://mon ...

  10. Java HashSet集合的子类LinkedHashSet集合

    说明 HashSet保证元素的唯一性,可是元素存放进去是没有顺序的. 在HashSet下面有一个子类java.util.LinkedHashSet,它是 链表 + 哈希表(数组+链表 或者 数组+红黑 ...